Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 21317, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494409

ABSTRACT

The nematode parasite intestine absorbs nutrients, is involved in innate immunity, can metabolize xenobiotics and as we show here, is also a site of action of the anthelmintic, diethylcarbamazine. Diethylcarbamazine (DEC) is used to treat lymphatic filariasis and activates TRP-2, GON-2 & CED-11 TRP channels in Brugia malayi muscle cells producing spastic paralysis. DEC also has stimulatory effects on ascarid nematode parasites. Using PCR techniques, we detected, in Ascaris suum intestine, message for: Asu-trp-2, Asu-gon-2, Asu-ced-11, Asu-ocr-1, Asu-osm-9 and Asu-trpa-1. Comparison of amino-acid sequences of the TRP channels of B. malayi, and A. suum revealed noteworthy similarity, suggesting that the intestine of Ascaris will also be sensitive to DEC. We used Fluo-3AM as a Ca2+ indicator and observed characteristic unsteady time-dependent increases in the Ca2+ signal in the intestine in response to DEC. Application of La3+ and the TRP channel inhibitors, 2-APB or SKF 96365, inhibited DEC mediated increases in intracellular Ca2+. These observations are important because they emphasize that the nematode intestine, in addition to muscle, is a site of action of DEC as well as other anthelmintics. DEC may also enhance the Ca2+ toxicity effects of other anthelmintics acting on the intestine or, increase the effects of other anthelmintics that are metabolized and excreted by the nematode intestine.


Subject(s)
Anthelmintics , Ascaris suum , Brugia malayi , Elephantiasis, Filarial , Animals , Ascaris , Anthelmintics/pharmacology , Elephantiasis, Filarial/drug therapy
2.
Int J Parasitol Drugs Drug Resist ; 20: 108-112, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36368250

ABSTRACT

Human and veterinary filarial nematode infections are a major health concern in tropical countries. They are transmitted by biting insects and mosquitoes. Lymphatic filariasis, a group of filarial infections caused by Brugia spp. and Wucheria bancrofti affect more than 120 million people worldwide. Infected individuals develop swollen limbs and disfigurement, leading to an inability to work and ostracization from society. Control and prophylaxis for these infections involve mass drug administration combinations of anthelmintics including diethylcarbamazine (DEC). DEC has actions on microfilariae, but its effects on adult worms are less pronounced. The SLO-1 (BK) channel activator, emodepside, kills adults of many filarial species. However, the in vivo efficacy of emodepside is suboptimal against B. malayi, possibly due to reduced bioavailability in the lymphatic system. Expressing different slo-1 splice variants in B. malayi also affects sensitivity to emodepside. This study explores the potentiation of emodepside mediated paralysis by DEC in adult female B. malayi. Worminator motility measurements show that co-application of DEC and emodepside increases the potency of emodepside 4-fold. The potentiation of the emodepside effect persists even after the worms recover (desensitize) from the initial effects of DEC. RNAi knock-down demonstrates that the DEC-mediated potentiation of emodepside requires the presence of TRP-2 channels. Our study demonstrates that the addition of DEC could enhance the effect of emodepside where bioavailability or activity against a specific species may be low.


Subject(s)
Brugia malayi , Elephantiasis, Filarial , Animals , Adult , Female , Humans , Brugia malayi/genetics , Diethylcarbamazine/pharmacology , Brugia , Elephantiasis, Filarial/drug therapy , Paralysis/chemically induced , Paralysis/drug therapy
3.
Biomed Mater ; 10(3): 035002, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25953953

ABSTRACT

Silk fibroin (SF) is a natural protein, which is derived from the Bombyx mori silkworm. SF based porous materials are extensively investigated for biomedical applications, due to their biocompatibility and biodegradability. In this work, CO2 assisted acidification is used to synthesize SF hydrogels that are subsequently converted to SF aerogels. The aqueous silk fibroin concentration is used to tune the morphology and textural properties of the SF aerogels. As the aqueous fibroin concentration increases from 2 to 6 wt%, the surface area of the resultant SF aerogels increases from 260 to 308 m(2) g(-1) and the compressive modulus of the SF aerogels increases from 19.5 to 174 kPa. To elucidate the effect of the freezing rate on the morphological and textural properties, SF cryogels are synthesized in this study. The surface area of the SF aerogels obtained from supercritical CO2 drying is approximately five times larger than the surface area of SF cryogels. SF aerogels exhibit distinct pore morphology compared to the SF cryogels. In vitro cell culture studies with human foreskin fibroblast cells demonstrate the cytocompatibility of the silk fibroin aerogel scaffolds and presence of cells within the aerogel scaffolds. The SF aerogels scaffolds created in this study with tailorable properties have potential for applications in tissue engineering.


Subject(s)
Fibroins/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Cells, Cultured , Compressive Strength , Cryogels , Fibroblasts/cytology , Fibroins/ultrastructure , Gels , Humans , Hydrogels , Materials Testing , Microscopy, Electron, Scanning
4.
Acta Biomater ; 10(10): 4419-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24954908

ABSTRACT

Biocompatible and biodegradable porous materials based on silk fibroin (SF), a natural protein derived from the Bombyx mori silkworm, are being extensively investigated for use in biomedical applications including mammalian cell bioprocessing, tissue engineering and drug delivery applications. In this work, low-pressure, gaseous CO2 is used as an acidifying agent to fabricate SF hydrogels. This low-pressure CO2 acidification method is compared to an acidification method using high-pressure CO2 to demonstrate the effect of CO2 mass transfer and pressure on SF sol-gel kinetics. The effect of SF molecular weight on the sol-gel kinetics is determined using the low-pressure CO2 method. The results from these studies demonstrate that low-pressure CO2 processing proves to be a facile method for synthesizing 3-D SF hydrogels.


Subject(s)
Bombyx/chemistry , Carbon Dioxide/chemistry , Fibroins/chemistry , Hydrogels/chemistry , Animals , Molecular Weight , Porosity
5.
J Phys Chem B ; 117(29): 8821-30, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23815675

ABSTRACT

The cis and trans conformation of a branched cyclic hydrocarbon affects the packing and, hence, the density, exhibited by that compound. Reported here are density data for branched cyclohexane (C6) compounds including methylcyclohexane, ethylcyclohexane (ethylcC6), cis-1,2-dimethylcyclohexane (cis-1,2), cis-1,4-dimethylcyclohexane (cis-1,4), and trans-1,4-dimethylcyclohexane (trans-1,4) determined at temperatures up to 525 K and pressures up to 275 MPa. Of the four branched C6 isomers, cis-1,2 exhibits the largest densities and the smallest densities are exhibited by trans-1,4. The densities are modeled with the Peng-Robinson (PR) equation of state (EoS), the high-temperature, high-pressure, volume-translated (HTHP VT) PREoS, and the perturbed chain, statistical associating fluid theory (PC-SAFT) EoS. Model calculations highlight the capability of these equations to account for the different densities observed for the four isomers investigated in this study. The HTHP VT-PREoS provides modest improvements over the PREoS, but neither cubic EoS is capable of accounting for the effect of isomer structural differences on the observed densities. The PC-SAFT EoS, with pure component parameters from the literature or from a group contribution method, provides improved density predictions relative to those obtained with the PREoS or HTHP VT-PREoS. However, the PC-SAFT EoS, with either set of parameters, also cannot fully account for the effect of the C6 isomer structure on the resultant density.

6.
Biotechnol Bioeng ; 110(6): 1674-80, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23280599

ABSTRACT

The effect of pressure, at elevated temperatures, is reported on the activity and stability of a thermophilic endo-ß-glucanase from the filamentous fungus Talaromyces emersonii. The production of reduced sugars after treatment at different temperatures and pressures is used as a measure of the activity and stability of the enzyme. The activity of the enzyme is maintained to higher temperatures with increasing pressure. For example, the relative activity of endo-ß-glucanase decreases to 30% after 4 h at 75°C and 1 bar, whereas it is preserved at 100% after 6 h at 75°C and 230 bar. High-pressure dynamic light scattering is used to characterize the hydrodynamic radius of the enzyme as a function of pressure, temperature, and time. At higher temperature the hydrodynamic radius increases with time, whereas increasing pressure suppresses this effect. Changes in the hydrodynamic radius are correlated with the activity measurements obtained at elevated pressures, since the changes in the hydrodynamic radius indicate structural changes of the enzyme, which cause the deactivation.


Subject(s)
Cellulase/chemistry , Cellulase/metabolism , Enzyme Stability , Scattering, Radiation , Hydrodynamics , Light , Pressure , Talaromyces/enzymology , Temperature
7.
J Biomed Mater Res A ; 84(4): 994-1005, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-17647242

ABSTRACT

A series of low surface energy fluorinated homopolymers and copolymers has been synthesized and characterized using thermal, optical, spectroscopic, and chromatographic techniques. Their utility as barrier technologies in oral care has been considered, and aqueous nanosuspensions of the materials have been deposited as films on model dental hard surfaces in the presence and absence of a salivary pellicle. Calcium hydroxyapatite has been used as a model for enamel, as has PMMA due to its widespread use in denture fabrication. Surface energy determinations, combined with XPS studies, have provided insights into the molecular-level organization at the surface of the film structures. Studies of solubility in supercritical carbon dioxide have identified the polymers that are suitable for processing in this medium.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Fluorine/chemistry , Polymers/chemistry , Carbon Dioxide/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Models, Chemical , Polymethyl Methacrylate/chemistry , Protective Devices , Solubility , Spectrophotometry/methods , Surface Properties , Temperature
8.
Chem Rev ; 99(2): 565-602, 1999 Feb 10.
Article in English | MEDLINE | ID: mdl-11848993
SELECTION OF CITATIONS
SEARCH DETAIL
...