Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters











Publication year range
1.
Adv Sci (Weinh) ; : e2403245, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119926

ABSTRACT

Despite clinical data stretching over millennia, the neurobiological basis of the effectiveness of acupuncture in treating diseases of the central nervous system has remained elusive. Here, using an established model of acupuncture treatment in Parkinson's disease (PD) model mice, we show that peripheral acupuncture stimulation activates hypothalamic melanin-concentrating hormone (MCH) neurons via nerve conduction. We further identify two separate neural pathways originating from anatomically and electrophysiologically distinct MCH neuronal subpopulations, projecting to the substantia nigra and hippocampus, respectively. Through chemogenetic manipulation specifically targeting these MCH projections, their respective roles in mediating the acupuncture-induced motor recovery and memory improvements following PD onset are demonstrated, as well as the underlying mechanisms mediating recovery from dopaminergic neurodegeneration, reactive gliosis, and impaired hippocampal synaptic plasticity. Collectively, these MCH neurons constitute not only a circuit-based explanation for the therapeutic effectiveness of traditional acupuncture, but also a potential cellular target for treating both motor and non-motor PD symptoms.

2.
Nat Commun ; 15(1): 2190, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467602

ABSTRACT

The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.


Subject(s)
Hippocampus , Pyramidal Cells , Mice , Animals , Feedback , Hippocampus/physiology , Pyramidal Cells/physiology , Neurons , CA1 Region, Hippocampal/physiology , Interneurons/physiology , Action Potentials/physiology
3.
Sci Adv ; 10(2): eadk4741, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38198539

ABSTRACT

Adult neurogenesis confers the hippocampus with unparalleled neural plasticity, essential for intricate cognitive functions. The specific influence of sparse newborn neurons (NBNs) in modulating neural activities and subsequently steering behavior, however, remains obscure. Using an engineered NBN-tetanus toxin mouse model (NBN-TeTX), we noninvasively silenced NBNs, elucidating their crucial role in impulse inhibition and cognitive flexibility as evidenced through Morris water maze reversal learning and Go/Nogo task in operant learning. Task-based functional MRI (tb-fMRI) paired with operant learning revealed dorsal hippocampal hyperactivation during the Nogo task in male NBN-TeTX mice, suggesting that hippocampal hyperexcitability might underlie the observed behavioral deficits. Additionally, resting-state fMRI (rs-fMRI) exhibited enhanced functional connectivity between the dorsal and ventral dentate gyrus following NBN silencing. Further investigations into the activities of PV+ interneurons and mossy cells highlighted the indispensability of NBNs in maintaining the hippocampal excitation/inhibition balance. Our findings emphasize that the neural plasticity driven by NBNs extensively modulates the hippocampus, sculpting inhibitory control and cognitive flexibility.


Subject(s)
Cognition , Neurons , Male , Animals , Mice , Learning , Interneurons , Synaptic Transmission
4.
Neurosci Biobehav Rev ; 158: 105559, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246230

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that impacts a variety of cognitive and behavioral domains. While a genetic component of ASD has been well-established, none of the numerous syndromic genes identified in humans accounts for more than 1% of the clinical patients. Due to this large number of target genes, numerous mouse models of the disorder have been generated. However, the focus on distinct brain circuits, behavioral phenotypes and diverse experimental approaches has made it difficult to synthesize the overwhelming number of model animal studies into concrete throughlines that connect the data across levels of investigation. Here we chose to focus on one circuit, the hippocampus, and one hypothesis, a shift in excitatory/inhibitory balance, to examine, from the level of the tripartite synapse up to the level of in vivo circuit activity, the key commonalities across disparate models that can illustrate a path towards a better mechanistic understanding of ASD's impact on hippocampal circuit function.


Subject(s)
Autism Spectrum Disorder , Animals , Mice , Humans , Autism Spectrum Disorder/genetics , Synapses , Hippocampus , Disease Models, Animal
5.
Cell Rep Methods ; 3(6): 100510, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37426754

ABSTRACT

In this issue of Cell Reports Methods, Osanai et al. report an innovative approach to extract an electromyography (EMG) signal from multi-channel local field potential (LFP) recordings using independent component analysis (ICA). This ICA-based approach offers precise and stable long-term behavioral assessment, eliminating the need for direct muscular recordings.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Electromyography/methods
7.
Mol Psychiatry ; 28(5): 1932-1945, 2023 05.
Article in English | MEDLINE | ID: mdl-36882500

ABSTRACT

The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Endogenous Retroviruses , Pregnancy , Female , Humans , Animals , Mice , Endogenous Retroviruses/genetics , DNA Copy Number Variations , Autistic Disorder/etiology , Prosencephalon/metabolism , Corpus Callosum/pathology , Disease Models, Animal , Mice, Inbred C57BL , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/complications , Mice, Inbred Strains
8.
Hippocampus ; 33(3): 252-265, 2023 03.
Article in English | MEDLINE | ID: mdl-36594707

ABSTRACT

Dynamic interactions between the subregions of the hippocampus are required for the encoding and consolidation of memory. While the interplay and contributions of the CA1 and CA3 regions are well understood, we continue to learn more about how CA2 differentially contributes to the organization of network function. For example, CA2 place cells have been reported to be less spatially tuned during exploration, but uniquely capable of coding place while an animal stops. Here we applied chemogenetics to transiently silence CA2 pyramidal cells and found that CA2 influences hippocampal dynamics in a state-dependent manner. We find that during rest, CA2 inhibition reduces synchronization across regions (CA1, CA2, CA3) and frequency bands (low-gamma- and ripple-band). Moreover, during new learning CA1 place field formation is slower in the absence of CA2 transmission and during pausing, CA1 pyramidal cells are less excitable without CA2 drive. On the network level, a novel convolutional neural network (SpikeDecoder) was employed to show subregion and state-dependent changes in spatial coding that agree with our observations on the single cell level. Together these data suggest additional novel roles for CA2 in governing and differentiating hippocampal dynamics under discrete behavioral states.


Subject(s)
CA1 Region, Hippocampal , Hippocampus , Animals , Hippocampus/physiology , CA1 Region, Hippocampal/physiology , Pyramidal Cells
9.
Mol Brain ; 16(1): 10, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658598

ABSTRACT

Social animals become stressed upon social isolation, proactively engaging in affiliative contacts among conspecifics after resocialization. We have previously reported that calcitonin receptor (Calcr) expressing neurons in the central part of the medial preoptic area (cMPOA) mediate contact-seeking behaviors in female mice. Calcr neurons in the posterodorsal part of the medial amygdala (MeApd) are also activated by resocialization, however their role in social affiliation is still unclear. Here we first investigated the functional characteristics of MeApd Calcr + cells; these neurons are GABAergic and show female-biased Calcr expression. Next, using an adeno-associated virus vector expressing a short hairpin RNA targeting Calcr we aimed to identify its molecular role in the MeApd. Inhibiting Calcr expression in the MeApd increased social contacts during resocialization without affecting locomotor activity, suggesting that the endogenous Calcr signaling in the MeApd suppresses social contacts. These results demonstrate the distinct roles of Calcr in the cMPOA and MeApd for regulating social affiliation.


Subject(s)
Corticomedial Nuclear Complex , Receptors, Calcitonin , Female , Animals , Mice , Receptors, Calcitonin/metabolism , Amygdala/metabolism , Neurons/metabolism , Preoptic Area/metabolism
10.
Cell Res ; 33(2): 91-92, 2023 02.
Article in English | MEDLINE | ID: mdl-36257980
11.
Neurosci Res ; 186: 1-2, 2023 01.
Article in English | MEDLINE | ID: mdl-36586728

Subject(s)
Neurosciences
12.
Neurosci Res ; 189: 13-19, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36572253

ABSTRACT

The place cells and well-defined oscillatory population rhythms of the rodent hippocampus have served as a powerful model system in linking cells and circuits to memory function. While the initial three decades of place cell research primarily focused on the activity of neurons during exploration, the last twenty-five years have seen growing interest in the physiology of the hippocampus at rest. During slow-wave sleep and quiet wakefulness the hippocampus exhibits sharp-wave ripples (SWRs), short high-frequency, high-amplitude oscillations, that organize the reactivation or 'replay' of sequences of place cells, and interventions that disrupt SWRs impair learning. While the canonical model of SWRs generation have emphasized CA3 input to CA1 as the source of excitatory drive, recent work suggests there are multiple circuits, including the CA2 region, that can both influence, generate and organize SWRs, both from the oscillatory and information content perspectives in a task and state-dependent manner. This extended circuitry and its function must be considered for a true understanding of the role of the hippocampus in off-line processes such as planning and consolidation.


Subject(s)
Hippocampus , Place Cells , Hippocampus/physiology , Memory/physiology , Learning , Neurons/physiology
13.
Neuron ; 110(19): 3091-3105.e9, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35987206

ABSTRACT

A major pathological hallmark of neurodegenerative diseases, including Alzheimer's, is a significant reduction in the white matter connecting the two cerebral hemispheres, as well as in the correlated activity between anatomically corresponding bilateral brain areas. However, the underlying circuit mechanisms and the cognitive relevance of cross-hemispheric (CH) communication remain poorly understood. Here, we show that novelty discrimination behavior activates CH neurons and enhances homotopic synchronized neural oscillations in the visual cortex. CH neurons provide excitatory drive required for synchronous neural oscillations between hemispheres, and unilateral inhibition of the CH circuit is sufficient to impair synchronous oscillations and novelty discrimination behavior. In the 5XFAD and Tau P301S mouse models, CH communication is altered, and novelty discrimination is impaired. These data reveal a hitherto uncharacterized CH circuit in the visual cortex, establishing a causal link between this circuit and novelty discrimination behavior and highlighting its impairment in mouse models of neurodegeneration.


Subject(s)
Hippocampus , Visual Cortex , Animals , Disease Models, Animal , Hippocampus/physiology , Interneurons/physiology , Mice , Neurons/physiology
14.
Mol Psychiatry ; 27(8): 3343-3354, 2022 08.
Article in English | MEDLINE | ID: mdl-35491410

ABSTRACT

Immune dysregulation plays a key role in the pathogenesis of autism. Changes occurring at the systemic level, from brain inflammation to disturbed innate/adaptive immune in the periphery, are frequently observed in patients with autism; however, the intrinsic mechanisms behind them remain elusive. We hypothesize a common etiology may lie in progenitors of different types underlying widespread immune dysregulation. By single-cell RNA sequencing (sc-RNA seq), we trace the developmental origins of immune dysregulation in a mouse model of idiopathic autism. It is found that both in aorta-gonad-mesonephros (AGM) and yolk sac (YS) progenitors, the dysregulation of HDAC1-mediated epigenetic machinery alters definitive hematopoiesis during embryogenesis and downregulates the expression of the AP-1 complex for microglia development. Subsequently, these changes result in the dysregulation of the immune system, leading to gut dysbiosis and hyperactive microglia in the brain. We further confirm that dysregulated immune profiles are associated with specific microbiota composition, which may serve as a biomarker to identify autism of immune-dysregulated subtypes. Our findings elucidate a shared mechanism for the origin of immune dysregulation from the brain to the gut in autism and provide new insight to dissecting the heterogeneity of autism, as well as the therapeutic potential of targeting immune-dysregulated autism subtypes.


Subject(s)
Autistic Disorder , Mice , Animals , Autistic Disorder/genetics , Mesonephros , Yolk Sac/physiology , Gonads , Epigenesis, Genetic/genetics , Disease Models, Animal
15.
Nat Commun ; 13(1): 709, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136064

ABSTRACT

Social animals actively engage in contact with conspecifics and experience stress upon isolation. However, the neural mechanisms coordinating the sensing and seeking of social contacts are unclear. Here we report that amylin-calcitonin receptor (Calcr) signaling in the medial preoptic area (MPOA) mediates affiliative social contacts among adult female mice. Isolation of females from free social interactions first induces active contact-seeking, then depressive-like behavior, concurrent with a loss of Amylin mRNA expression in the MPOA. Reunion with peers induces physical contacts, activates both amylin- and Calcr-expressing neurons, and leads to a recovery of Amylin mRNA expression. Chemogenetic activation of amylin neurons increases and molecular knockdown of either amylin or Calcr attenuates contact-seeking behavior, respectively. Our data provide evidence in support of a previously postulated origin of social affiliation in mammals.


Subject(s)
Behavior, Animal/physiology , Preoptic Area/physiology , Receptors, Calcitonin/metabolism , Receptors, Islet Amyloid Polypeptide/metabolism , Social Behavior , Animals , Female , Gene Knockout Techniques , Islet Amyloid Polypeptide/genetics , Islet Amyloid Polypeptide/metabolism , Mice , RNA, Messenger/metabolism , Signal Transduction/physiology
16.
Glia ; 70(5): 961-974, 2022 05.
Article in English | MEDLINE | ID: mdl-35084774

ABSTRACT

Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.


Subject(s)
Glutamic Acid , Receptors, N-Methyl-D-Aspartate , Animals , Astrocytes , Rats , Rats, Sprague-Dawley , Synapses
17.
Trends Neurosci ; 45(2): 120-132, 2022 02.
Article in English | MEDLINE | ID: mdl-34916083

ABSTRACT

Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.


Subject(s)
Fear , Hippocampus , Humans
18.
Science ; 374(6569): 857-863, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34762472

ABSTRACT

Memories are initially encoded in the hippocampus but subsequently consolidated to the cortex. Although synaptic plasticity is key to these processes, its precise spatiotemporal profile remains poorly understood. Using optogenetics to selectively erase long-term potentiation (LTP) within a defined temporal window, we found that distinct phases of synaptic plasticity play differential roles. The first wave acts locally in the hippocampus to confer context specificity. The second wave, during sleep on the same day, organizes these neurons into synchronously firing assemblies. Finally, LTP in the anterior cingulate cortex during sleep on the second day is required for further stabilization of the memory. This demonstrates the precise localization, timing, and characteristic contributions of the plasticity events that underlie the early phase of memory consolidation.


Subject(s)
CA1 Region, Hippocampal/physiology , Memory Consolidation , Neuronal Plasticity , Animals , Chromophore-Assisted Light Inactivation , Excitatory Postsynaptic Potentials , Long-Term Potentiation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Pyramidal Cells/physiology , Rats , Sleep , Synapses/physiology
19.
Nat Commun ; 12(1): 6114, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671042

ABSTRACT

In the hippocampal circuit CA3 input plays a critical role in the organization of CA1 population activity, both during learning and sleep. While integrated spatial representations have been observed across the two hemispheres of CA1, these regions lack direct connectivity and thus the circuitry responsible remains largely unexplored. Here we investigate the role of CA3 in organizing bilateral CA1 activity by blocking synaptic transmission at CA3 terminals through the inducible transgenic expression of tetanus toxin. Although the properties of single place cells in CA1 were comparable bilaterally, we find a decrease of ripple synchronization between left and right CA1 after silencing CA3. Further, during both exploration and rest, CA1 neuronal ensemble activity is less coordinated across hemispheres. This included degradation of the replay of previously explored spatial paths in CA1 during rest, consistent with the idea that CA3 bilateral projections integrate activity between left and right hemispheres and orchestrate bilateral hippocampal coding.


Subject(s)
CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Functional Laterality/physiology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , Excitatory Postsynaptic Potentials/physiology , Mice , Neural Pathways/physiology , Place Cells/physiology , Rest/physiology , Synaptic Transmission/genetics , Tetanus Toxin/genetics , Wakefulness/physiology
20.
Neuron ; 109(22): 3674-3687.e7, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34555316

ABSTRACT

The structured reactivation of hippocampal neuronal ensembles during fast synchronous oscillatory events, termed sharp-wave ripples (SWRs), has been suggested to play a crucial role in the storage and use of memory. Activity in both the CA2 and CA3 subregions can precede this population activity in CA1, and chronic inhibition of either region alters SWR oscillations. However, the precise contribution of CA2 to the oscillation, as well as to the reactivation of CA1 neurons within it, remains unclear. Here, we employ chemogenetics to transiently silence CA2 pyramidal cells in mice, and we observe that although SWRs still occur, the reactivation of CA1 pyramidal cell ensembles within the events lose both temporal and informational precision. These observations suggest that CA2 activity contributes to the fidelity of experience-dependent hippocampal replay.


Subject(s)
Hippocampus , Pyramidal Cells , Animals , Hippocampus/physiology , Mice , Neurons , Pyramidal Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL