Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Expert Rev Mol Diagn ; : 1-10, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38832527

ABSTRACT

INTRODUCTION: Despite recent advances in diagnostic technologies and new drugs becoming available, tuberculosis (TB) remains a major global health burden. If detected early, screened for drug resistance, and fully treated, TB could be easily controlled. AREAS COVERED: Here the authors discuss M. tuberculosis culture methods which are considered the definitive confirmation of M. tuberculosis infection, and limited advances made to build on these core elements of TB laboratory diagnosis. Literature searches showed that molecular techniques provide enhanced speed of turnaround, sensitivity, and richness of data. Sequencing of the whole genome, is becoming well established for identification and inference of drug resistance. PubMed® literature searches were conducted (November 2022-March 2024). EXPERT OPINION: This section highlights future advances in diagnosis and infection control. Prevention of prolonged hospital admissions and rapid TAT are of the most benefit to the overall patient experience. Host transcriptional blood markers have been used in treatment monitoring studies and, with appropriate evaluation, could be rolled out in a diagnostic setting. Additionally, the MBLA is being incorporated into latest clinical trial designs. Whole genome sequencing has enhanced epidemiological evidence. Artificial intelligence, along with machine learning, have the ability to revolutionize TB diagnosis and susceptibility testing within the next decade.

2.
Future Microbiol ; : 1-11, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884302

ABSTRACT

Aim: The study determines rates of carbapenem resistance (CR) and frequency of blaNDM in multidrug-resistance (MDR) or extensive drug resistance (XDR), and evaluates the potential of phenotypic tests for detecting NDM production. Materials & methods: Singleplex PCR was used to detect blaNDM. Phenotypic tests, including combination disc test (CDST) and modified Hodge test (MHT), were evaluated for NDM production. Results: Among 338 CR isolates, 47.63% were MDR, whereas 52.36% were XDR with 53.25% carrying blaNDM. MHT was found to be discriminative for detecting NDM production, whereas no significant association was observed for CDST. Conclusion: The high incidence of CR and MDR and XDR isolates possessing blaNDM presents an impending threat in therapeutics. Limitations of phenotypic tests suggest better testing, including molecular detection of the enzyme.


[Box: see text].

3.
Lancet Infect Dis ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38768617

ABSTRACT

BACKGROUND: The current tuberculosis (TB) drug development pipeline is being re-populated with candidates, including nitroimidazoles such as pretomanid, that exhibit a potential to shorten TB therapy by exerting a bactericidal effect on non-replicating bacilli. Based on results from preclinical and early clinical studies, a four-drug combination of bedaquiline, pretomanid, moxifloxacin, and pyrazinamide (BPaMZ) regimen was identified with treatment-shortening potential for both drug-susceptible (DS) and drug-resistant (DR) TB. This trial aimed to determine the safety and efficacy of BPaMZ. We compared 4 months of BPaMZ to the standard 6 months of isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) in DS-TB. 6 months of BPaMZ was assessed in DR-TB. METHODS: SimpliciTB was a partially randomised, phase 2c, open-label, clinical trial, recruiting participants at 26 sites in eight countries. Participants aged 18 years or older with pulmonary TB who were sputum smear positive for acid-fast bacilli were eligible for enrolment. Participants with DS-TB had Mycobacterium tuberculosis with sensitivity to rifampicin and isoniazid. Participants with DR-TB had M tuberculosis with resistance to rifampicin, isoniazid, or both. Participants with DS-TB were randomly allocated in a 1:1 ratio, stratified by HIV status and cavitation on chest radiograph, using balanced block randomisation with a fixed block size of four. The primary efficacy endpoint was time to sputum culture-negative status by 8 weeks; the key secondary endpoint was unfavourable outcome at week 52. A non-inferiority margin of 12% was chosen for the key secondary outcome. Safety and tolerability outcomes are presented as descriptive analyses. The efficacy analysis population contained patients who received at least one dose of medication and who had efficacy data available and had no major protocol violations. The safety population contained patients who received at least one dose of medication. This study is registered with ClinicalTrials.gov (NCT03338621) and is completed. FINDINGS: Between July 30, 2018, and March 2, 2020, 455 participants were enrolled and received at least one dose of study treatment. 324 (71%) participants were male and 131 (29%) participants were female. 303 participants with DS-TB were randomly assigned to 4 months of BPaMZ (n=150) or HRZE (n=153). In a modified intention-to-treat (mITT) analysis, by week 8, 122 (84%) of 145 and 70 (47%) of 148 participants were culture-negative on 4 months of BPaMZ and HRZE, respectively, with a hazard ratio for earlier negative status of 2·93 (95% CI 2·17-3·96; p<0·0001). Median time to negative culture (TTN) was 6 weeks (IQR 4-8) on 4 months of BPaMZ and 11 weeks (6-12) on HRZE. 86% of participants with DR-TB receiving 6 months of BPaMZ (n=152) reached culture-negative status by week 8, with a median TTN of 5 weeks (IQR 3-7). At week 52, 120 (83%) of 144, 134 (93%) of 144, and 111 (83%) of 133 on 4 months of BPaMZ, HRZE, and 6 months of BPaMZ had favourable outcomes, respectively. Despite bacteriological efficacy, 4 months of BPaMZ did not meet the non-inferiority margin for the key secondary endpoint in the pre-defined mITT population due to higher withdrawal rates for adverse hepatic events. Non-inferiority was demonstrated in the per-protocol population confirming the effect of withdrawals with 4 months of BPaMZ. At least one liver-related treatment-emergent adverse effect (TEAE) occurred among 45 (30%) participants on 4 months of BPaMZ, 38 (25%) on HRZE, and 33 (22%) on 6 months of BPaMZ. Serious liver-related TEAEs were reported by 20 participants overall; 11 (7%) among those on 4 months of BPaMZ, one (1%) on HRZE, and eight (5%) on 6 months of BPaMZ. The most common reasons for discontinuation of trial treatment were hepatotoxicity (ten participants [2%]), increased hepatic enzymes (nine participants [2%]), QTcF prolongation (three participants [1%]), and hypersensitivity (two participants [<1%]). INTERPRETATION: For DS-TB, BPaMZ successfully met the primary efficacy endpoint of sputum culture conversion. The regimen did not meet the key secondary efficacy endpoint due to adverse events resulting in treatment withdrawal. Our study demonstrated the potential for treatment-shortening efficacy of the BPaMZ regimen for DS-TB and DR-TB, providing clinical validation of a murine model widely used to identify such regimens. It also highlights that novel, treatment-shortening TB treatment regimens require an acceptable toxicity and tolerability profile with minimal monitoring in low-resource and high-burden settings. The increased risk of unpredictable severe hepatic adverse events with 4 months of BPaMZ would be a considerable obstacle to implementation of this regimen in settings with high burdens of TB with limited infrastructure for close surveillance of liver biochemistry. Future research should focus on improving the preclinical and early clinical detection and mitigation of safety issues together and further efforts to optimise shorter treatments. FUNDING: TB Alliance.

4.
PLoS Pathog ; 20(4): e1011574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598556

ABSTRACT

Drug-resistant tuberculosis (DR-TB) threatens progress in the control of TB. Mathematical models are increasingly being used to guide public health decisions on managing both antimicrobial resistance (AMR) and TB. It is important to consider bacterial heterogeneity in models as it can have consequences for predictions of resistance prevalence, which may affect decision-making. We conducted a systematic review of published mathematical models to determine the modelling landscape and to explore methods for including bacterial heterogeneity. Our first objective was to identify and analyse the general characteristics of mathematical models of DR-mycobacteria, including M. tuberculosis. The second objective was to analyse methods of including bacterial heterogeneity in these models. We had different definitions of heterogeneity depending on the model level. For between-host models of mycobacterium, heterogeneity was defined as any model where bacteria of the same resistance level were further differentiated. For bacterial population models, heterogeneity was defined as having multiple distinct resistant populations. The search was conducted following PRISMA guidelines in five databases, with studies included if they were mechanistic or simulation models of DR-mycobacteria. We identified 195 studies modelling DR-mycobacteria, with most being dynamic transmission models of non-treatment intervention impact in M. tuberculosis (n = 58). Studies were set in a limited number of specific countries, and 44% of models (n = 85) included only a single level of "multidrug-resistance (MDR)". Only 23 models (8 between-host) included any bacterial heterogeneity. Most of these also captured multiple antibiotic-resistant classes (n = 17), but six models included heterogeneity in bacterial populations resistant to a single antibiotic. Heterogeneity was usually represented by different fitness values for bacteria resistant to the same antibiotic (61%, n = 14). A large and growing body of mathematical models of DR-mycobacterium is being used to explore intervention impact to support policy as well as theoretical explorations of resistance dynamics. However, the majority lack bacterial heterogeneity, suggesting that important evolutionary effects may be missed.


Subject(s)
Antitubercular Agents , Models, Theoretical , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use
5.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Article in English | MEDLINE | ID: mdl-38622380

ABSTRACT

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Epithelial Cells , Nasal Mucosa , SARS-CoV-2 , Serine Endopeptidases , Humans , COVID-19/virology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Adult , Middle Aged , Aged , Epithelial Cells/virology , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Nasal Mucosa/virology , Child , Age Factors , Virus Replication , Child, Preschool , Viral Tropism , Male , Female , Aged, 80 and over , Cells, Cultured , Adolescent , Infant
6.
Clin Chem ; 70(4): 642-652, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38479728

ABSTRACT

BACKGROUND: Improved monitoring of Mycobacterium tuberculosis response to treatment is urgently required. We previously developed the molecular bacterial load assay (MBLA), but it is challenging to integrate into the clinical diagnostic laboratory due to a labor-intensive protocol required at biosafety level 3 (BSL-3). A modified assay was needed. METHODS: The rapid enumeration and diagnostic for tuberculosis (READ-TB) assay was developed. Acetic acid was tested and compared to 4 M guanidine thiocyanate to be simultaneously bactericidal and preserve mycobacterial RNA. The extraction was based on silica column technology and incorporated low-cost reagents: 3 M sodium acetate and ethanol for the RNA extraction to replace phenol-chloroform. READ-TB was fully validated and compared directly to the MBLA using sputa collected from individuals with tuberculosis. RESULTS: Acetic acid was bactericidal to M. tuberculosis with no significant loss in 16S rRNA or an unprotected mRNA fragment when sputum was stored in acetic acid at 25°C for 2 weeks or -20°C for 1 year. This novel use of acetic acid allows processing of sputum for READ-TB at biosafety level 2 (BSL-2) on sample receipt. READ-TB is semiautomated and rapid. READ-TB correlated with the MBLA when 85 human sputum samples were directly compared (R2 = 0.74). CONCLUSIONS: READ-TB is an improved version of the MBLA and is available to be adopted by clinical microbiology laboratories as a tool for tuberculosis treatment monitoring. READ-TB will have a particular impact in low- and middle-income countries (LMICs) for laboratories with no BSL-3 laboratory and for clinical trials testing new combinations of anti-tuberculosis drugs.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Acetic Acid , Sputum , Laboratories , RNA, Ribosomal, 16S/genetics , Containment of Biohazards , Tuberculosis/diagnosis , Tuberculosis/microbiology
7.
Lancet Infect Dis ; 24(2): 140-149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37918414

ABSTRACT

BACKGROUND: Childhood tuberculosis remains a major cause of morbidity and mortality in part due to missed diagnosis. Diagnostic methods with enhanced sensitivity using easy-to-obtain specimens are needed. We aimed to assess the diagnostic accuracy of the Cepheid Mycobacterium tuberculosis Host Response prototype cartridge (MTB-HR), a candidate test measuring a three-gene transcriptomic signature from fingerstick blood, in children with presumptive tuberculosis disease. METHODS: RaPaed-TB was a prospective diagnostic accuracy study conducted at four sites in African countries (Malawi, Mozambique, South Africa, and Tanzania) and one site in India. Children younger than 15 years with presumptive pulmonary or extrapulmonary tuberculosis were enrolled between Jan 21, 2019, and June 30, 2021. MTB-HR was performed at baseline and at 1 month in all children and was repeated at 3 months and 6 months in children on tuberculosis treatment. Accuracy was compared with tuberculosis status based on standardised microbiological, radiological, and clinical data. FINDINGS: 5313 potentially eligible children were screened, of whom 975 were eligible. 784 children had MTB-HR test results, of whom 639 had a diagnostic classification and were included in the analysis. MTB-HR differentiated children with culture-confirmed tuberculosis from those with unlikely tuberculosis with a sensitivity of 59·8% (95% CI 50·8-68·4). Using any microbiological confirmation (culture, Xpert MTB/RIF Ultra, or both), sensitivity was 41·6% (34·7-48·7), and using a composite clinical reference standard, sensitivity was 29·6% (25·4-34·2). Specificity for all three reference standards was 90·3% (95% CI 85·5-94·0). Performance was similar in different age groups and by malnutrition status. Among children living with HIV, accuracy against the strict reference standard tended to be lower (sensitivity 50·0%, 15·7-84·3) compared with those without HIV (61·0%, 51·6-69·9), although the difference did not reach statistical significance. Combining baseline MTB-HR result with one Ultra result identified 71·2% of children with microbiologically confirmed tuberculosis. INTERPRETATION: MTB-HR showed promising diagnostic accuracy for culture-confirmed tuberculosis in this large, geographically diverse, paediatric cohort and hard-to-diagnose subgroups. FUNDING: European and Developing Countries Clinical Trials Partnership, UK Medical Research Council, Swedish International Development Cooperation Agency, Bundesministerium für Bildung und Forschung; German Center for Infection Research (DZIF).


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Child , Humans , Mycobacterium tuberculosis/genetics , Prospective Studies , Developing Countries , Tuberculosis, Pulmonary/drug therapy , Sensitivity and Specificity , Tuberculosis/diagnosis , South Africa , Sputum/microbiology
8.
Mucosal Immunol ; 17(1): 124-136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007005

ABSTRACT

SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Antigens, Viral , Immunoglobulin A , SARS-CoV-2 , Vimentin
9.
Lancet Respir Med ; 12(2): 117-128, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980911

ABSTRACT

BACKGROUND: Around 500 000 people worldwide develop rifampicin-resistant tuberculosis each year. The proportion of successful treatment outcomes remains low and new treatments are needed. Following an interim analysis, we report the final safety and efficacy outcomes of the TB-PRACTECAL trial, evaluating the safety and efficacy of oral regimens for the treatment of rifampicin-resistant tuberculosis. METHODS: This open-label, randomised, controlled, multi-arm, multicentre, non-inferiority trial was conducted at seven hospital and community sites in Uzbekistan, Belarus, and South Africa, and enrolled participants aged 15 years and older with pulmonary rifampicin-resistant tuberculosis. Participants were randomly assigned, in a 1:1:1:1 ratio using variable block randomisation and stratified by trial site, to receive 36-80 week standard care; 24-week oral bedaquiline, pretomanid, and linezolid (BPaL); BPaL plus clofazimine (BPaLC); or BPaL plus moxifloxacin (BPaLM) in stage one of the trial, and in a 1:1 ratio to receive standard care or BPaLM in stage two of the trial, the results of which are described here. Laboratory staff and trial sponsors were masked to group assignment and outcomes were assessed by unmasked investigators. The primary outcome was the percentage of participants with a composite unfavourable outcome (treatment failure, death, treatment discontinuation, disease recurrence, or loss to follow-up) at 72 weeks after randomisation in the modified intention-to-treat population (all participants with rifampicin-resistant disease who received at least one dose of study medication) and the per-protocol population (a subset of the modified intention-to-treat population excluding participants who did not complete a protocol-adherent course of treatment (other than because of treatment failure or death) and those who discontinued treatment early because they violated at least one of the inclusion or exclusion criteria). Safety was measured in the safety population. The non-inferiority margin was 12%. This trial is registered with ClinicalTrials.gov, NCT02589782, and is complete. FINDINGS: Between Jan 16, 2017, and March 18, 2021, 680 patients were screened for eligibility, of whom 552 were enrolled and randomly assigned (152 to the standard care group, 151 to the BPaLM group, 126 to the BPaLC group, and 123 to the BPaL group). The standard care and BPaLM groups proceeded to stage two and are reported here, post-hoc analyses of the BPaLC and BPaL groups are also reported. 151 participants in the BPaLM group and 151 in the standard care group were included in the safety population, with 138 in the BPaLM group and 137 in the standard care group in the modified intention-to-treat population. In the modified intention-to-treat population, unfavourable outcomes were reported in 16 (12%) of 137 participants for whom outcome was assessable in the BPaLM group and 56 (41%) of 137 participants in the standard care group (risk difference -29·2 percentage points [96·6% CI -39·8 to -18·6]; non-inferiority and superiority p<0·0001). 34 (23%) of 151 participants receiving BPaLM had adverse events of grade 3 or higher or serious adverse events, compared with 72 (48%) of 151 participants receiving standard care (risk difference -25·2 percentage points [96·6% CI -36·4 to -13·9]). Five deaths were reported in the standard care group by week 72, of which one (COVID-19 pneumonia) was unrelated to treatment and four (acute pancreatitis, suicide, sudden death, and sudden cardiac death) were judged to be treatment-related. INTERPRETATION: The 24-week, all-oral BPaLM regimen is safe and efficacious for the treatment of pulmonary rifampicin-resistant tuberculosis, and was added to the WHO guidance for treatment of this condition in 2022. These findings will be key to BPaLM becoming the preferred regimen for adolescents and adults with pulmonary rifampicin-resistant tuberculosis. FUNDING: Médecins Sans Frontières.


Subject(s)
Nitroimidazoles , Pancreatitis , Tuberculosis, Multidrug-Resistant , Adult , Adolescent , Humans , Rifampin , Acute Disease , Pancreatitis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Moxifloxacin , Linezolid/therapeutic use
10.
Microbiol Spectr ; 12(1): e0163123, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37982632

ABSTRACT

IMPORTANCE: An accurate diagnosis of drug resistance in clinical isolates is an important step for better treatment outcomes. The current study observed a higher discordance rate of rifampicin resistance on Mycobacteria Growth Indicator Tube (MGIT) drug susceptibility testing (DST) than Lowenstein-Jenson (LJ) DST when compared with the rpoB sequencing. We detected a few novel mutations and their combination in rifampicin resistance isolates that were missed by MGIT DST and may be useful for the better management of tuberculosis (TB) treatment outcomes. Few novel deletions in clinical isolates necessitate the importance of rpoB sequencing in large data sets in geographic-specific locations, especially high-burden countries. We explored the discordance rate on MGIT and LJ, which is important for the clinical management of rifampicin resistance to avoid the mistreatment of drug-resistant TB. Furthermore, MGIT-sensitive isolates may be subjected to molecular methods of diagnosis for further confirmation and treatment options.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Rifampin/pharmacology , Rifampin/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Genotype , Phenotype
11.
JAC Antimicrob Resist ; 5(6): dlad135, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38098890

ABSTRACT

Background: Antibody-deficient patients are at high risk of respiratory tract infections. Many therefore receive antibiotic prophylaxis and have access to antibiotics for self-administration in the event of breakthrough infections, which may increase antimicrobial resistance (AMR). Objectives: To understand AMR in the respiratory tract of patients with antibody deficiency. Methods: Sputum samples were collected from antibody-deficient patients in a cross-sectional and prospective study; bacteriology culture, 16S rRNA profiling and PCR detecting macrolide resistance genes were performed. Bacterial isolates were identified using MALDI-TOF, antimicrobial susceptibility was determined by disc diffusion and WGS of selected isolates was done using Illumina NextSeq with analysis for resistome and potential cross-transmission. Neutrophil elastase was measured by a ProteaseTag immunoassay. Results: Three hundred and forty-three bacterial isolates from sputum of 43 patients were tested. Macrolide and tetracycline resistance were common (82% and 35% of isolates). erm(B) and mef(A) were the most frequent determinants of macrolide resistance. WGS revealed viridans streptococci as the source of AMR genes, of which 23% also carried conjugative plasmids linked with AMR genes and other mobile genetic elements. Phylogenetic analysis of Haemophilus influenzae isolates suggested possible transmission between patients attending clinic.In the prospective study, a negative correlation between sputum neutrophil elastase concentration and Shannon entropy α-diversity (Spearman's ρ = -0.306, P = 0.005) and a positive relationship with Berger-Parker dominance index (ρ = 0.502, P < 0.001) were found. Similar relationships were noted for the change in elastase concentration between consecutive samples, increases in elastase associating with reduced α-diversity. Conclusions: Measures to limit antibiotic usage and spread of AMR should be implemented in immunodeficiency clinics. Sputum neutrophil elastase may be a useful marker to guide use of antibiotics for respiratory infection.

12.
Bull World Health Organ ; 101(11): 730-737, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961060

ABSTRACT

The World Health Organization has developed target product profiles containing minimum and optimum targets for key characteristics for tests for tuberculosis treatment monitoring and optimization. Tuberculosis treatment optimization refers to initiating or switching to an effective tuberculosis treatment regimen that results in a high likelihood of a good treatment outcome. The target product profiles also cover tests of cure conducted at the end of treatment. The development of the target product profiles was informed by a stakeholder survey, a cost-effectiveness analysis and a patient-care pathway analysis. Additional feedback from stakeholders was obtained by means of a Delphi-like process, a technical consultation and a call for public comment on a draft document. A scientific development group agreed on the final targets in a consensus meeting. For characteristics rated of highest importance, the document lists: (i) high diagnostic accuracy (sensitivity and specificity); (ii) time to result of optimally ≤ 2 hours and no more than 1 day; (iii) required sample type to be minimally invasive, easily obtainable, such as urine, breath, or capillary blood, or a respiratory sample that goes beyond sputum; (iv) ideally the test could be placed at a peripheral-level health facility without a laboratory; and (v) the test should be affordable to low- and middle-income countries, and allow wide and equitable access and scale-up. Use of these target product profiles should facilitate the development of new tuberculosis treatment monitoring and optimization tests that are accurate and accessible for all people being treated for tuberculosis.


L'Organisation mondiale de la santé a élaboré des profils de produits cibles contenant des cibles minimales et optimales pour les caractéristiques principales des essais destinés au suivi et à l'optimisation du traitement de la tuberculose. L'optimisation du traitement de la tuberculose fait référence à l'instauration d'un régime de traitement efficace de la tuberculose ou à l'adoption d'un tel régime, avec une probabilité élevée d'obtenir de bons résultats thérapeutiques. Les profils de produits cibles couvrent également les essais de guérison effectués à l'issue du traitement. Les profils de produits cibles ont été élaborés sur la base d'un sondage auprès des parties prenantes, d'une analyse coût-efficacité et d'une analyse du parcours de soins du patient. Des retours supplémentaires des parties prenantes ont été obtenus au moyen d'un processus créé selon la méthode Delphi, d'une consultation technique et d'un appel à commentaires publics sur un projet de document. Un groupe d'élaboration scientifique s'est mis d'accord sur les objectifs finaux lors d'une réunion de concertation. En ce qui concerne les caractéristiques jugées les plus importantes, le document énumère ce qui suit: (i) une grande précision diagnostique (sensibilité et spécificité); (ii) un délai idéal d'obtention des résultats ≤ 2 heures et au maximum de 1 jour; (iii) le type d'échantillon requis doit être peu invasif et facile à obtenir, comme l'urine, l'haleine ou le sang capillaire, ou bien un échantillon respiratoire au-delà des expectorations; (iv) idéalement, l'essai pourrait avoir lieu dans un établissement de santé périphérique sans laboratoire ; et (v) l'essai devrait être abordable pour les pays à revenu faible et intermédiaire et permettre un accès large et équitable ainsi qu'une mise à l'échelle. L'utilisation de ces profils de produits cibles devrait faciliter la mise au point de nouveaux essais de surveillance et d'optimisation du traitement de la tuberculose qui soient précis et accessibles à toutes les personnes suivant un traitement pour la tuberculose.


La Organización Mundial de la Salud ha elaborado perfiles de productos objetivo que contienen objetivos mínimos y óptimos para las características principales de las pruebas de seguimiento y optimización del tratamiento de la tuberculosis. La optimización del tratamiento de la tuberculosis consiste en iniciar o cambiar a un régimen eficaz de tratamiento de la tuberculosis que ofrezca una alta probabilidad de un buen resultado terapéutico. Los perfiles de productos objetivo también abarcan las pruebas de curación realizadas al final del tratamiento. La elaboración de los perfiles de los productos objetivo se basó en una encuesta a las partes interesadas, un análisis de rentabilidad y un análisis de la vía de atención al paciente. Se obtuvo información adicional de las partes interesadas mediante un proceso tipo Delphi, una consulta técnica y una convocatoria de comentarios públicos sobre un borrador del documento. Un grupo de desarrollo científico acordó los objetivos finales en una reunión de consenso. Para las características clasificadas de mayor importancia, el documento enumera: (i) alta precisión diagnóstica (sensibilidad y especificidad); (ii) tiempo hasta el resultado de óptimamente ≤ 2 horas y no más de 1 día; (iii) el tipo de muestra requerida debe ser mínimamente invasiva, fácil de obtener, como orina, aliento o sangre capilar, o una muestra respiratoria que vaya más allá del esputo; (iv) idealmente la prueba podría realizarse en un centro sanitario periférico sin laboratorio; y (v) la prueba debe ser asequible para los países de ingresos bajos y medios y permitir un acceso amplio y equitativo y su expansión. El uso de estos perfiles de producto objetivo debería facilitar el desarrollo de pruebas nuevas de seguimiento y optimización del tratamiento de la tuberculosis que sean precisas y accesibles para todas las personas que reciben tratamiento antituberculoso.


Subject(s)
Body Fluids , Tuberculosis , Humans , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Sensitivity and Specificity , World Health Organization , Sputum
13.
PLOS Glob Public Health ; 3(11): e0002159, 2023.
Article in English | MEDLINE | ID: mdl-37939051

ABSTRACT

Lassa fever (LF) is a potentially lethal viral haemorrhagic infection of humans caused by Lassa mammarenavirus (LASV). It is an important endemic zoonotic disease in West Africa with growing evidence for increasing frequency and sizes of outbreaks. Phylogeographic and molecular epidemiology methods have projected expansion of the Lassa fever endemic zone in the context of future global change. The Natal multimammate mouse (Mastomys natalensis) is the predominant LASV reservoir, with few studies investigating the role of other animal species. To explore host sequencing biases, all LASV nucleotide sequences and associated metadata available on GenBank (n = 2,298) were retrieved. Most data originated from Nigeria (54%), Guinea (20%) and Sierra Leone (14%). Data from non-human hosts (n = 703) were limited and only 69 sequences encompassed complete genes. We found a strong positive correlation between the number of confirmed human cases and sequences at the country level (r = 0.93 (95% Confidence Interval = 0.71-0.98), p < 0.001) but no correlation exists between confirmed cases and the number of available rodent sequences (r = -0.019 (95% C.I. -0.71-0.69), p = 0.96). Spatial modelling of sequencing effort highlighted current biases in locations of available sequences, with increased sequencing effort observed in Southern Guinea and Southern Nigeria. Phylogenetic analyses showed geographic clustering of LASV lineages, suggestive of isolated events of human-to-rodent transmission and the emergence of currently circulating strains of LASV from the year 1498 in Nigeria. Overall, the current study highlights significant geographic limitations in LASV surveillance, particularly, in non-human hosts. Further investigation of the non-human reservoir of LASV, alongside expanded surveillance, are required for precise characterisation of the emergence and dispersal of LASV. Accurate surveillance of LASV circulation in non-human hosts is vital to guide early detection and initiation of public health interventions for future Lassa fever outbreaks.

15.
PLOS Glob Public Health ; 3(10): e0002283, 2023.
Article in English | MEDLINE | ID: mdl-37851685

ABSTRACT

Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.

16.
Antimicrob Resist Infect Control ; 12(1): 75, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553715

ABSTRACT

BACKGROUND: Ventriculoperitoneal (VP) shunt infections in adults represent a severe complication and make treatment more challenging. Therefore, drug susceptibility patterns are crucial for therapeutic decisions and infection control in neurosurgical centers. This 7-year retrospective study aimed to identify the bacteria responsible for adult VP shunt infections and determine their drug susceptibility patterns. METHODS: This single-center study was performed from 2015 to 2021 in Lahore, Pakistan, and included CSF cultures from VP shunt infections. Demographic data, causative organisms, and antimicrobial susceptibility testing results were collected. Multivariate analysis of variance (MANOVA) and two-sample t-tests were used to analyze and compare the antibiotic sensitivity trends over the study period. RESULTS: 14,473 isolates recovered from 13,937 CSF samples of VP shunt infections were identified and analyzed for their susceptibility patterns to antimicrobials. The proportion of Gram-negative and Gram-positive bacteria were 11,030 (76%) and 3443 (24)%, respectively. The predominant bacteria were Acinetobacter species (n = 5898, 41%), followed by Pseudomonas species (n = 2368, 16%) and coagulase-negative Staphylococcus (CoNS) (n = 1880, 13%). 100% of Staphylococcus aureus (S.aureus) and CoNS were sensitive to vancomycin and linezolid (n = 2580). However, 52% of S. aureus (719/1,343) were methicillin-resistant Staphylococcus aureus (MRSA). Acinetobacter showed maximum sensitivity to meropenem at 69% (2759/4768). Pseudomonas was 80% (1385/1863 sensitive to piperacillin-tazobactam, Escherichia coli (E. coli) showed 72% to amikacin (748/1055), while Klebsiella spp. was 57% (574/1170) sensitive to piperacillin-tazobactam. The sensitivity of piperacillin-tazobactam and meropenem for Gram-negative bacteria decreased significantly (p < 0.05) over 7 years, with 92.2% and 88.91% sensitive in 2015 and 66.7% and 62.8% sensitive in 2021, respectively. CONCLUSION: The significant decrease in the effectiveness of carbapenem and beta-lactam/beta-lactamase inhibitor combination drugs for the common Gram-negative causative agents of VP shunt infections suggests that alternative antibiotics such as colistin, fosfomycin, ceftazidime/avibactam, ceftolozane/tazobactam, and tigecycline should be considered and in consequence included in testing panels. Additionally, it is recommended to adopt care bundles for the prevention of VP shunt infection.


Subject(s)
Prosthesis-Related Infections , Ventriculoperitoneal Shunt , Humans , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Gram-Negative Bacterial Infections/drug therapy , Pakistan/epidemiology , Retrospective Studies , Staphylococcal Infections/drug therapy , Ventriculoperitoneal Shunt/adverse effects , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/epidemiology
17.
Microb Genom ; 9(8)2023 08.
Article in English | MEDLINE | ID: mdl-37526642

ABSTRACT

The bacillus Calmette-Guérin (BCG) vaccine has been in use for prevention of tuberculosis for over a century. It remains the only widely available tuberculosis vaccine and its protective efficacy has varied across geographical regions. Since it was developed, the BCG vaccine strain has been shared across different laboratories around the world, where use of differing culture methods has resulted in genetically distinct strains over time. Whilst differing BCG vaccine efficacy around the world is well documented, and the reasons for this may be multifactorial, it has been hypothesized that genetic differences in BCG vaccine strains contribute to this variation. Isolates from an historic archive of lyophilized BCG strains were regrown, DNA was extracted and then whole-genome sequenced using Oxford Nanopore Technologies. The resulting whole-genome data were plotted on a phylogenetic tree and analysed to identify the presence or absence of regions of difference (RDs) and single-nucleotide polymorphisms (SNPs) relating to virulence, growth and cell wall structure. Of 50 strains available, 36 were revived in culture and 39 were sequenced. Morphology differed between the strains distributed before and after 1934. There was phylogenetic association amongst certain geographically classified strains, most notably BCG-Russia, BCG-Japan and BCG-Danish. RD2, RD171 and RD713 deletions were associated with late strains (seeded after 1927). When mapped to BCG-Pasteur 1172, the SNPs in sigK, plaA, mmaA3 and eccC5 were associated with early strains. Whilst BCG-Russia, BCG-Japan and BCG-Danish showed strong geographical isolate clustering, the late strains, including BCG-Pasteur, showed more variation. A wide range of SNPs were seen within geographically classified strains, and as much intra-strain variation as between-strain variation was seen. The date of distribution from the original Pasteur laboratory (early pre-1927 or late post-1927) gave the strongest association with genetic differences in regions of difference and virulence-related SNPs, which agrees with the previous literature.


Subject(s)
Mycobacterium bovis , Tuberculosis , Humans , BCG Vaccine/genetics , Phylogeny , Tuberculosis/prevention & control , Base Sequence
18.
JAC Antimicrob Resist ; 5(3): dlad056, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37193005

ABSTRACT

Background: WGS has significant potential to help tackle the major public health problem of TB. The Republic of Korea has the third highest rates of TB of all Organisation for Economic Cooperation and Development countries but there has been very limited use of WGS in TB to date. Objectives: A retrospective comparison of Mycobacterium tuberculosis (MTB) clinical isolates from 2015 to 2017 from two centres in the Republic of Korea using WGS to compare phenotypic drug susceptibility testing (pDST) and WGS drug susceptibility predictions (WGS-DSP). Methods: Fifty-seven MTB isolates had DNA extracted and were sequenced using the Illumina HiSeq platform. The WGS analysis was performed using bwa mem, bcftools and IQ-Tree; resistance markers were identified using TB profiler. Phenotypic susceptibilities were carried out at the Supranational TB reference laboratory (Korean Institute of Tuberculosis). Results: For first-line antituberculous drugs concordance for rifampicin, isoniazid, pyrazinamide and ethambutol was 98.25%, 92.98%, 87.72% and 85.96%, respectively. The sensitivity of WGS-DSP compared with pDST for rifampicin, isoniazid, pyrazinamide and ethambutol was 97.30%, 92.11%, 78.95% and 95.65%, respectively. The specificity for these first-line antituberculous drugs was 100%, 94.74%, 92.11% and 79.41%, respectively. The sensitivity and specificity for second-line drugs ranged from 66.67% to 100%, and from 82.98% to 100%, respectively. Conclusions: This study confirms the potential role for WGS in drug susceptibility prediction, which would reduce turnaround times. However, further larger studies are needed to ensure current databases of drug resistance mutations are reflective of the TB present in the Republic of Korea.

19.
Microbiol Spectr ; 11(3): e0499522, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37154773

ABSTRACT

Colonization and subsequent health care-associated infection (HCAI) with Acinetobacter baumannii are a concern for vulnerable patient groups within the hospital setting. Outbreaks involving multidrug-resistant strains are associated with increased patient morbidity and mortality and poorer overall outcomes. Reliable molecular typing methods can help to trace transmission routes and manage outbreaks. In addition to methods deployed by reference laboratories, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may assist by making initial in-house judgments on strain relatedness. However, limited studies on method reproducibility exist for this application. We applied MALDI-TOF MS typing to A. baumannii isolates associated with a nosocomial outbreak and evaluated different methods for data analysis. In addition, we compared MALDI-TOF MS with whole-genome sequencing (WGS) and Fourier transform infrared spectroscopy (FTIR) as orthogonal methods to further explore their resolution for bacterial strain typing. A related subgroup of isolates consistently clustered separately from the main outbreak group by all investigated methods. This finding, combined with epidemiological data from the outbreak, indicates that these methods identified a separate transmission event unrelated to the main outbreak. However, the MALDI-TOF MS upstream approach introduced measurement variability impacting method reproducibility and limiting its reliability as a standalone typing method. Availability of in-house typing methods with well-characterized sources of measurement uncertainty could assist with rapid and dependable confirmation (or denial) of suspected transmission events. This work highlights some of the steps to be improved before such tools can be fully integrated into routine diagnostic service workflows for strain typing. IMPORTANCE Managing the transmission of antimicrobial resistance necessitates reliable methods for tracking outbreaks. We compared the performance of MALDI-TOF MS with orthogonal approaches for strain typing, including WGS and FTIR, for Acinetobacter baumannii isolates correlated with a health care-associated infection (HCAI) event. Combined with epidemiological data, all methods investigated identified a group of isolates that were temporally and spatially linked to the outbreak, yet potentially attributed to a separate transmission event. This may have implications for guiding infection control strategies during an outbreak. However, the technical reproducibility of MALDI-TOF MS needs to be improved for it to be employed as a standalone typing method, as different stages of the experimental workflow introduced bias influencing interpretation of biomarker peak data. Availability of in-house methods for strain typing of bacteria could improve infection control practices following increased reports of outbreaks of antimicrobial-resistant organisms during the COVID-19 pandemic, related to sessional usage of personal protective equipment (PPE).


Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , COVID-19 , Cross Infection , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Acinetobacter baumannii/genetics , Reproducibility of Results , Bacterial Typing Techniques/methods , Pandemics , COVID-19/epidemiology , Molecular Typing , Cross Infection/epidemiology , Cross Infection/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...