Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Aging Clin Exp Res ; 35(11): 2543-2553, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37907663

ABSTRACT

BACKGROUND: Understanding mobility aid use has implications for falls risk reduction and aid prescription. However, aid use in daily life is understudied and more complex than revealed by commonly used yes/no self-reporting. AIMS: To advance approaches for evaluating mobility aid use among older adults using a situational (context-driven) questionnaire and wearable sensors. METHODS: Data from two cross-sectional observational studies of older adults were used: (1) 190 participants (86 ± 5 years) completed tests of standing, sit-to-stand, walking, grip strength, and self-reported fear of falling and (2) 20 participants (90 ± 4 years) wore two body-worn and one aid-mounted sensors continuously for seven days to objectively quantify aid use during walking. Situational and traditional binary reporting stratified participants into aid dependency levels (0-4) and aid-user groups, respectively. Physical performance and fear of falling were compared between aid users, and dependency levels and sensor-derived walking behaviors were compared to reported aid use. RESULTS: Physical performance and fear of falling differed between aid-user groups (P < 0.05). Sensor-derived outputs revealed differences in walking behaviors and aid use when categorized by dependency level and walking bout length (P < 0.05). Walking bout frequency (rho(18) = - 0.47, P = 0.038) and aid use time (rho(13) = .72, P = 0.002) were associated with dependency level. DISCUSSION: Comparisons of situational aid dependency revealed heterogeneity between aid users suggesting binary aid use reporting fails to identify individual differences in walking and aid use behaviors. CONCLUSIONS: Enhanced subjective aid use reporting and objective measurements of walking and aid use may improve aid prescription and inform intervention to support safe and effective mobility in older adults.


Subject(s)
Accidental Falls , Fear , Humans , Cross-Sectional Studies , Standing Position , Walking , Aged, 80 and over , Observational Studies as Topic
2.
Front Neurol ; 14: 1188799, 2023.
Article in English | MEDLINE | ID: mdl-37719760

ABSTRACT

Advances in our understanding of postural control have highlighted the need to examine the influence of higher brain centers in the modulation of this complex function. There is strong evidence of a link between emotional state, autonomic nervous system (ANS) activity and somatic nervous system (somatic NS) activity in postural control. For example, relationships have been demonstrated between postural threat, anxiety, fear of falling, balance confidence, and physiological arousal. Behaviorally, increased arousal has been associated with changes in velocity and amplitude of postural sway during quiet standing. The potential links between ANS and somatic NS, observed in control of posture, are associated with shared neuroanatomical connections within the central nervous system (CNS). The influence of emotional state on postural control likely reflects the important influence the limbic system has on these ANS/somatic NS control networks. This narrative review will highlight several examples of behaviors which routinely require coordination between the ANS and somatic NS, highlighting the importance of the neurofunctional link between these systems. Furthermore, we will extend beyond the more historical focus on threat models and examine how disordered/altered emotional state and ANS processing may influence postural control and assessment. Finally, this paper will discuss studies that have been important in uncovering the modulatory effect of emotional state on postural control including links that may inform our understanding of disordered control, such as that observed in individuals living with Parkinson's disease and discuss methodological tools that have the potential to advance understanding of this complex relationship.

3.
Digit Health ; 9: 20552076231179031, 2023.
Article in English | MEDLINE | ID: mdl-37312943

ABSTRACT

Objective: There has been tremendous growth in wearable technologies for health monitoring but limited efforts to optimize methods for sharing wearables-derived information with older adults and clinical cohorts. This study aimed to co-develop, design and evaluate a personalized approach for information-sharing regarding daily health-related behaviors captured with wearables. Methods: A participatory research approach was adopted with: (a) iterative stakeholder, and evidence-led development of feedback reporting; and (b) evaluation in a sample of older adults (n = 15) and persons living with neurodegenerative disease (NDD) (n = 25). Stakeholders included persons with lived experience, healthcare providers, health charity representatives and individuals involved in aging/NDD research. Feedback report information was custom-derived from two limb-mounted inertial measurement units and a mobile electrocardiography device worn by participants for 7-10 days. Mixed methods were used to evaluate reporting 2 weeks following delivery. Data were summarized using descriptive statistics for the group and stratified by cohort and cognitive status. Results: Participants (n = 40) were 60% female (median 72 (60-87) years). A total of 82.5% found the report easy to read or understand, 80% reported the right amount of information was shared, 90% found the information helpful, 92% shared the information with a family member or friend and 57.5% made a behavior change. Differences emerged in sub-group comparisons. A range of participant profiles existed in terms of interest, uptake and utility. Conclusions: The reporting approach was generally well-received with perceived value that translated into enhanced self-awareness and self-management of daily health-related behaviors. Future work should examine potential for scale, and the capacity for wearables-derived feedback to influence longer-term behavior change.

4.
JMIR Form Res ; 7: e41685, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36920452

ABSTRACT

BACKGROUND: Accurate measurement of daily physical activity (PA) is important as PA is linked to health outcomes in older adults and people living with complex health conditions. Wrist-worn accelerometers are widely used to estimate PA intensity, including walking, which composes much of daily PA. However, there is concern that wrist-derived PA data in these cohorts is unreliable due to slow gait speed, mobility aid use, disease-related symptoms that impact arm movement, and transient activities of daily living. Despite the potential for error in wrist-derived PA intensity estimates, their use has become ubiquitous in research and clinical application. OBJECTIVE: The goals of this work were to (1) determine the accuracy of wrist-based estimates of PA intensity during known walking periods in older adults and people living with cerebrovascular disease (CVD) or neurodegenerative disease (NDD) and (2) explore factors that influence wrist-derived intensity estimates. METHODS: A total of 35 older adults (n=23 with CVD or NDD) wore an accelerometer on the dominant wrist and ankle for 7 to 10 days of continuous monitoring. Stepping was detected using the ankle accelerometer. Analyses were restricted to gait bouts ≥60 seconds long with a cadence ≥80 steps per minute (LONG walks) to identify periods of purposeful, continuous walking likely to reflect moderate-intensity activity. Wrist accelerometer data were analyzed within LONG walks using 15-second epochs, and published intensity thresholds were applied to classify epochs as sedentary, light, or moderate-to-vigorous physical activity (MVPA). Participants were stratified into quartiles based on the percent of walking epochs classified as sedentary, and the data were examined for differences in behavioral or demographic traits between the top and bottom quartiles. A case series was performed to illustrate factors and behaviors that can affect wrist-derived intensity estimates during walking. RESULTS: Participants averaged 107.7 (SD 55.8) LONG walks with a median cadence of 107.3 (SD 10.8) steps per minute. Across participants, wrist-derived intensity classification was 22.9% (SD 15.8) sedentary, 27.7% (SD 14.6) light, and 49.3% (SD 25.5) MVPA during LONG walks. All participants measured a statistically lower proportion of wrist-derived activity during LONG walks than expected (all P<.001), and 80% (n=28) of participants had at least 20 minutes of LONG walking time misclassified as sedentary based on wrist-derived intensity estimates. Participants in the highest quartile of wrist-derived sedentary classification during LONG walks were significantly older (t16=4.24, P<.001) and had more variable wrist movement (t16=2.13, P=.049) compared to those in the lowest quartile. CONCLUSIONS: The current best practice wrist accelerometer method is prone to misclassifying activity intensity during walking in older adults and people living with complex health conditions. A multidevice approach may be warranted to advance methods for accurately assessing PA in these groups.

5.
Exp Brain Res ; 240(10): 2739-2746, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36107217

ABSTRACT

Perturbation-induced reach-to-grasp reactions are dependent on vision to capture environmental features of potential support surfaces. Previous research proposed the use of an intrinsic visuospatial map of the environment to reduce delays in motor responses (e.g., stepping, grasping a handrail). Forming such a map from foveal vision would be challenging during movement as it would require constant foveal scanning. The objective of this study was to determine if compensatory reach-to-grasp reactions could be successfully executed while relying on a visuospatial map acquired using peripheral vision. Subjects were instructed to respond to a perturbation by grasping a handle randomly located at 0°, 20° or 40° in their field of view under three visual conditions: full vision throughout the entire trial (FV), vision available prior to perturbation only (MAP), and vision available post-perturbation only (ONLINE). Electromyography was used to determine reaction time and kinematic data were collected to determine initial reach angle. Overall, participants were successful in arresting whole-body motion across all visual conditions and handle locations. Initial reach angles were target specific when vision was available prior to perturbation onset (FV and MAP). However, the 40° handle location produced a greater initial reach angle in MAP, suggesting some limitations for mapping in the further visual periphery. These findings suggest that peripheral vision contributes to the ability to spatially locate targets by building an a priori visuospatial map, which benefits the control of rapid compensatory reach-to-grasp reactions evoked in the response to unpredictable events of instability.


Subject(s)
Hand Strength , Psychomotor Performance , Hand Strength/physiology , Humans , Movement/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Visual Perception/physiology
6.
BMC Med Res Methodol ; 22(1): 147, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35596151

ABSTRACT

BACKGROUND: Accelerometery is commonly used to estimate physical activity, sleep, and sedentary behavior. In free-living conditions, periods of device removal (non-wear) can lead to misclassification of behavior with consequences for research outcomes and clinical decision making. Common methods for non-wear detection are limited by data transformations (e.g., activity counts) or algorithm parameters such as minimum durations or absolute temperature thresholds that risk over- or under-estimating non-wear time. This study aimed to advance non-wear detection methods by integrating a 'rate-of-change' criterion for temperature into a combined temperature-acceleration algorithm. METHODS: Data were from 39 participants with neurodegenerative disease (36% female; age: 45-83 years) who wore a tri-axial accelerometer (GENEActiv) on their wrist 24-h per day for 7-days as part of a multi-sensor protocol. The reference dataset was derived from visual inspection conducted by two expert analysts. Linear regression was used to establish temperature rate-of-change as a criterion for non-wear detection. A classification and regression tree (CART) decision tree classifier determined optimal parameters separately for non-wear start and end detection. Classifiers were trained using data from 15 participants (38.5%). Outputs from the CART analysis were supplemented based on edge cases and published parameters. RESULTS: The dataset included 186 non-wear periods (85.5% < 60 min). Temperature rate-of-change over the first five minutes of non-wear was - 0.40 ± 0.17 °C/minute and 0.36 ± 0.21 °C/minute for the first five minutes following device donning. Performance of the DETACH (DEvice Temperature and Accelerometer CHange) algorithm was improved compared to existing algorithms with recall of 0.942 (95% CI 0.883 to 1.0), precision of 0.942 (95% CI 0.844 to 1.0), F1-Score of 0.942 (95% CI 0.880 to 1.0) and accuracy of 0.996 (0.994-1.000). CONCLUSION: The DETACH algorithm accurately detected non-wear intervals as short as five minutes; improving non-wear classification relative to current interval-based methods. Using temperature rate-of-change combined with acceleration results in a robust algorithm appropriate for use across different temperature ranges and settings. The ability to detect short non-wear periods is particularly relevant to free-living scenarios where brief but frequent removals occur, and for clinical application where misclassification of behavior may have important implications for healthcare decision-making.


Subject(s)
Accelerometry , Neurodegenerative Diseases , Acceleration , Accelerometry/methods , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Sedentary Behavior , Temperature
7.
Gerontology ; 68(11): 1246-1257, 2022.
Article in English | MEDLINE | ID: mdl-35026758

ABSTRACT

BACKGROUND: Independent mobility is a complex behavior that relies on the ability to walk, maintain stability, and transition between postures. However, guidelines for assessment that details what elements of mobility to evaluate and how they should be measured remain unclear. METHODS: Performance on tests of standing, sit-to-stand, and walking were evaluated in a cohort of 135 complex, comorbid, and older adults (mean age 87 ± 5.5 years). Correlational analysis was conducted to examine the degree of association for measures within and between mobility domains on a subset of participants (n = 83) able to complete all tasks unaided. Participants were also grouped by the presence of risk markers for frailty (gait speed and grip strength) to determine if the level of overall impairment impacted performance scores and if among those with risk markers, the degree of association was greater. RESULTS: Within-domain relationships for sit-to-stand and walking were modest (rho = 0.01-0.60). Associations either did not exist or relationships were weak for measures reflecting different domains (rho = -0.35 to 0.25, p > 0.05). As expected, gait speed differed between those with and without frailty risk markers (p < 0.001); however, balance and sit-to-stand measures did not (p ≥ 0.05). CONCLUSIONS: This study highlights the need to independently evaluate different mobility domains within an individual as a standard assessment approach. Modest within-domain relationships emphasize the need to account for multiple, unique control challenges within more complex domains. These findings have important implications for standardized mobility assessment and targeted rehabilitation strategies for older adults.


Subject(s)
Frailty , Humans , Aged , Aged, 80 and over , Geriatric Assessment , Walking Speed , Walking , Hand Strength
8.
J Neurol ; 269(5): 2673-2686, 2022 May.
Article in English | MEDLINE | ID: mdl-34705114

ABSTRACT

BACKGROUND: Remote health monitoring with wearable sensor technology may positively impact patient self-management and clinical care. In individuals with complex health conditions, multi-sensor wear may yield meaningful information about health-related behaviors. Despite available technology, feasibility of device-wearing in daily life has received little attention in persons with physical or cognitive limitations. This mixed methods study assessed the feasibility of continuous, multi-sensor wear in persons with cerebrovascular (CVD) or neurodegenerative disease (NDD). METHODS: Thirty-nine participants with CVD, Alzheimer's disease/amnestic mild cognitive impairment, frontotemporal dementia, Parkinson's disease, or amyotrophic lateral sclerosis (median age 68 (45-83) years, 36% female) wore five devices (bilateral ankles and wrists, chest) continuously for a 7-day period. Adherence to device wearing was quantified by examining volume and pattern of device removal (non-wear). A thematic analysis of semi-structured de-brief interviews with participants and study partners was used to examine user acceptance. RESULTS: Adherence to multi-sensor wear, defined as a minimum of three devices worn concurrently, was high (median 98.2% of the study period). Non-wear rates were low across all sensor locations (median 17-22 min/day), with significant differences between some locations (p = 0.006). Multi-sensor non-wear was higher for daytime versus nighttime wear (p < 0.001) and there was a small but significant increase in non-wear over the collection period (p = 0.04). Feedback from de-brief interviews suggested that multi-sensor wear was generally well accepted by both participants and study partners. CONCLUSION: A continuous, multi-sensor remote health monitoring approach is feasible in a cohort of persons with CVD or NDD.


Subject(s)
Cardiovascular Diseases , Neurodegenerative Diseases , Parkinson Disease , Wearable Electronic Devices , Aged , Feasibility Studies , Female , Humans , Male
9.
J Gerontol A Biol Sci Med Sci ; 76(6): 1124-1133, 2021 05 22.
Article in English | MEDLINE | ID: mdl-32766776

ABSTRACT

BACKGROUND: Impaired blood pressure (BP) recovery with orthostatic hypotension on standing occurs in 20% of older adults. Low BP is associated with low cerebral blood flow but mechanistic links to postural instability and falls are not established. We investigated whether posture-related reductions in cerebral tissue oxygenation (tSO2) in older adults impaired stability upon standing, if a brief sit before standing improved tSO2 and stability, and if Low-tSO2 predicted future falls. METHOD: Seventy-seven older adults (87 ± 7 years) completed (i) supine-stand, (ii) supine-sit-stand, and (iii) sit-stand transitions with continuous measurements of tSO2 (near-infrared spectroscopy). Total path length (TPL) of the center of pressure sway quantified stability. K-cluster analysis grouped participants into High-tSO2 (n = 62) and Low-tSO2 (n = 15). Fall history was followed up for 6 months. RESULTS: Change in tSO2 during supine-stand was associated with increased TPL (R = -.356, p = .001). When separated into groups and across all transitions, the Low-tSO2 group had significantly lower tSO2 (all p < .01) and poorer postural stability (p < .04) through 3 minutes of standing compared to the High-tSO2 group. There were no effects of transition type on tSO2 or TPL for the High-tSO2 group, but a 10-second sitting pause improved tSO2 and enhanced postural stability in the Low-tSO2 group (all p < .05). During 6-month follow-up, the Low-tSO2 group had a trend (p < .1) for increased fall risk. CONCLUSIONS: This is the first study to show an association between posture-related cerebral hypoperfusion and quantitatively assessed instability. Importantly, we found differences among older adults suggesting those with lower tSO2 and greater instability might be at increased risk of a future fall.


Subject(s)
Blood Pressure/physiology , Brain Chemistry/physiology , Cerebrovascular Circulation/physiology , Hypotension, Orthostatic/physiopathology , Oxygen/analysis , Accidental Falls , Aged , Aged, 80 and over , Female , Humans , Male , Posture/physiology , Sitting Position , Spectroscopy, Near-Infrared
10.
Front Integr Neurosci ; 14: 33, 2020.
Article in English | MEDLINE | ID: mdl-32719591

ABSTRACT

Modulating cortical excitability based on a stimulus' relevance to the task at hand is a component of sensory gating, and serves to protect higher cortical centers from being overwhelmed with irrelevant information (McIlroy et al., 2003; Kumar et al., 2005; Wasaka et al., 2005). This study examined relevancy-based modulation of cortical excitability, and corresponding behavioral responses, in the face of distracting stimuli in participants with and without a history of concussion (mean age 22 ± 3 SD years; most recent concussion 39.1 ± 30 SD months). Participants were required to make a scaled motor response to the amplitudes of visual and tactile stimuli presented individually or concurrently. Task relevance was manipulated, and stimuli were occasionally presented with irrelevant distractors. Electroencephalography (EEG) and task accuracy data were collected from participants with and without a history of concussion. The somatosensory-evoked N70 event-related potential (ERP) was significantly modulated by task relevance in the control group but not in those with a history of concussion, and there was a significantly greater cost to task accuracy in the concussion history group when relevant stimuli were presented with an irrelevant distractor. This study demonstrated that relevancy-based modulation of electrophysiological responses and behavioral correlates of sensory gating differ in people with and without a history of concussion, even after patients were symptom-free and considered recovered from their injuries.

11.
Gait Posture ; 73: 161-167, 2019 09.
Article in English | MEDLINE | ID: mdl-31336331

ABSTRACT

BACKGROUND: The specific mechanisms responsible for age-related decline in forward stability control remain unclear. Previous work has suggested reactive control of net ground reaction force (GRFnet) eccentricity may be responsible for age-related challenges in mediolateral stability control during the restabilisation phase of forward compensatory stepping responses. RESEARCH QUESTIONS: Does reactive control of GRFnet eccentricity play a role in managing forward stability control during the restabilisation phase of a forward stepping response to external balance perturbation? METHODS: Healthy younger (YA) (n = 20) and older adults (OA) (n = 20) were tethered to a rigid frame, via adjustable cable. Participants were released from a standardised initial forward lean and regained their balance using a single step. Whole-body motion analysis and four force platforms were utilised for data acquisition. Forward instability was quantified as centre of mass (COM) incongruity - the difference between the first local peak and final stable anterior COM positions. The extent of GRFnet eccentricity was quantified as the sagittal-plane angle of divergence of the line of action of the GRFnet relative to the COM. Two discrete points during restabilisation were examined (P1 and P2), which have been suggested to be indicative of proactive and reactive COM control, respectively. Age-related differences in magnitude, timing and trial-to-trial variability of kinematic and kinetic outcome variables were analysed using two-factor ANOVAs with repeated-measures. RESULTS: OA exhibited greater COM incongruity magnitude and variability - both were reduced with trial-repetition. There were no age-related differences in the magnitude or timing of P2. Instead, OA exhibited a reduced magnitude of GRFnet eccentricity at P1. There was a positive correlation between AP COM incongruity magnitude and P1 magnitude. SIGNIFICANCE: Different from mediolateral stability control, the present results suggest that OA may experience forward stability control challenges as a function of insufficient preparatory lower limb muscle activation prior to foot-contact.


Subject(s)
Adaptation, Physiological , Aging/physiology , Foot/physiology , Postural Balance/physiology , Proprioception/physiology , Aged , Biomechanical Phenomena/physiology , Female , Humans , Male , Young Adult
12.
Gait Posture ; 70: 162-167, 2019 05.
Article in English | MEDLINE | ID: mdl-30875603

ABSTRACT

BACKGROUND: Locomotion on stairs is challenging for balance control and relates to a significant number of injurious falls. The visual system provides relevant information to guide stair locomotion and there is evidence that peripheral vision is potentially important. RESEARCH QUESTION: This study investigated the role of the lower visual field information for the control of stair walking. It was hypothesized that restriction in the lower visual field (LVF) would significantly impact gaze and locomotor behaviour specifically during descent and during transition phases emphasizing the importance of the LVF information during online control. METHODS: Healthy young adults (n = 12) ascended and descended a 7-step staircase while wearing customized goggles that restricted the LVF. Three visual conditions were tested: full field of view (FULL); 30° (MILD), and 15° (SEVERE) of lower field of view available. Stride time, head pitch angle and handrail use were assessed during approach, transition steps (two steps at the top and bottom of the stairs) and middle step phases. RESULTS: Transient downward head pitch angle increased with LVF restriction, while walk speed decreased and handrail use increased. Occlusion impaired stair descent more strongly than ascent reflected by a larger downward head pitch angles and slower walk times. LVF restriction had a greater influence on stride time and head angle during the approach and first transition compared to other stair regions. SIGNIFICANCE: Information from the lower visual field is important to guide stair walking and particularly when negotiating the first few steps of a staircase. Restriction in the lower visual field during stair walking results in more cautious locomotor behaviour such as walking slower and using the handrails. In daily activities, tasks or conditions that restrict or alter the lower visual field information may elevate the risk for missteps and falls.


Subject(s)
Stair Climbing/physiology , Visual Fields/physiology , Adult , Biomechanical Phenomena , Female , Gait/physiology , Healthy Volunteers , Humans , Male , Walking Speed/physiology , Young Adult
13.
Neuroscience ; 401: 43-58, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30668974

ABSTRACT

Human bipedal balance control is proposed to be the integrated activity of distributed neural areas. There is growing understanding about the cortical involvement in this highly automated behavior. While evidence exists for cortical activity temporally linked to reactive balance control, little is known about the functional interaction of potential cortical regions. Here, we used functional connectivity and graph theoretical analysis to derive functional cortical networks during reactive balance control from an event-related potential evoked by external perturbation known as the perturbation-evoked potential N1 (PEP N1). Fourteen healthy young adults were subjected to temporally unpredictable postural perturbations using a custom-made lean and release cable system. Electroencephalographic signals were recorded using a 64-channel electrode cap and segmented around perturbation onset. Functional connectivity was analyzed in source-space and sensor-space using coherence measures and functional cortical networks were characterized using graph measures. The results suggest that there might exist a balance control cortical network while standing and rapid, transient, and frequency-specific reorganization occurs in this network during reactive balance control events. This reorganization was characterized by an increased number of short-range connections between neighboring areas and increased strength between connections in delta, theta, alpha, and beta frequency bands during PEP N1 compared to baseline. To our knowledge, this is the first study to report the existence of functional cortical networks during reactive balance control with potential implications on assessing impaired balance associated with various neural diseases.


Subject(s)
Cerebral Cortex/physiology , Postural Balance/physiology , Posture/physiology , Adult , Electroencephalography , Electromyography , Evoked Potentials/physiology , Female , Humans , Male , Movement Disorders , Muscle, Skeletal/physiology , Reaction Time/physiology
14.
Handb Clin Neurol ; 159: 205-228, 2018.
Article in English | MEDLINE | ID: mdl-30482315

ABSTRACT

Stroke, or cerebrovascular accident, involves injury to the central nervous system as a result of a vascular cause, and is a leading cause of disability worldwide. People with stroke often experience sensory, cognitive, and motor sequelae that can lead to difficulty walking, controlling balance in standing and voluntary tasks, and reacting to prevent a fall following an unexpected postural perturbation. This chapter discusses the interrelationships between stroke-related impairments, problems with control of balance and gait, fall risk, fear of falling, and participation in daily physical activity. Rehabilitation can improve balance and walking function, and consequently independence and quality of life, for those with stroke. This chapter also describes effective interventions for improving balance and walking function poststroke, and identifies some areas for further research in poststroke rehabilitation.


Subject(s)
Stroke , Humans
15.
Sensors (Basel) ; 18(4)2018 Apr 21.
Article in English | MEDLINE | ID: mdl-29690496

ABSTRACT

Wearable sensors could facilitate point of care, clinically feasible assessments of dynamic stability and associated fall risk through an assessment of single-task (ST) and dual-task (DT) walking. This study investigated gait changes between ST and DT walking and between older adult prospective fallers and non-fallers. The results were compared to a study based on retrospective fall occurrence. Seventy-five individuals (75.2 ± 6.6 years; 47 non-fallers, 28 fallers; 6 month prospective fall occurrence) walked 7.62 m under ST and DT conditions while wearing pressure-sensing insoles and accelerometers at the head, pelvis, and on both shanks. DT-induced gait changes included changes in temporal measures, centre of pressure (CoP) path stance deviations and coefficient of variation, acceleration descriptive statistics, Fast Fourier Transform (FFT) first quartile, ratio of even to odd harmonics, and maximum Lyapunov exponent. Compared to non-fallers, prospective fallers had significantly lower DT anterior⁻posterior CoP path stance coefficient of variation, DT head anterior⁻posterior FFT first quartile, ST left shank medial⁻lateral FFT first quartile, and ST right shank superior maximum acceleration. DT-induced gait changes were consistent regardless of faller status or when the fall occurred (retrospective or prospective). Gait differences between fallers and non-fallers were dependent on retrospective or prospective faller identification.


Subject(s)
Gait , Accidental Falls , Aged , Aged, 80 and over , Humans , Postural Balance , Prospective Studies , Retrospective Studies , Wearable Electronic Devices
16.
Biol Psychol ; 132: 9-16, 2018 02.
Article in English | MEDLINE | ID: mdl-29102708

ABSTRACT

The left and right prefrontal cortices are linked to networks that control approach and withdrawal motivation, respectively. The relationship between activity in the left and right prefrontal activity is used to assess brain states and specifically their link to motivational behaviours and tendencies. The most common measure used in this context is called the frontal alpha asymmetry (FAA), which compares alpha (8-13Hz) power at each region. Interestingly, research shows that FAA is influenced by aerobic exercise by increasing relative left prefrontal cortex activity. In turn this effect may be beneficial for individuals with mood disorders that are associated with abnormal motivational tendencies. However, it is unknown whether changes in FAA after exercise are due to cardiovascular demands of activity or simply the movement required for the exercise. Therefore, this study aimed to investigate the influence of aerobic exercise and 'no intensity' bilateral movement cycling on FAA in young healthy adults. Results showed aerobic exercise caused a significant increase in FAA scores 22-38min after exercise. However, movement did not lead to a significant change in FAA. This suggests there is an intensity required for physical activity to evoke a change in FAA.


Subject(s)
Alpha Rhythm/physiology , Exercise/physiology , Prefrontal Cortex/physiology , Adult , Brain/physiology , Cardiovascular Physiological Phenomena , Electroencephalography , Female , Humans , Male , Motivation/physiology , Young Adult
17.
JAMA Neurol ; 74(7): 857-865, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28505243

ABSTRACT

Importance: Gait performance is affected by neurodegeneration in aging and has the potential to be used as a clinical marker for progression from mild cognitive impairment (MCI) to dementia. A dual-task gait test evaluating the cognitive-motor interface may predict dementia progression in older adults with MCI. Objective: To determine whether a dual-task gait test is associated with incident dementia in MCI. Design, Setting, and Participants: The Gait and Brain Study is an ongoing prospective cohort study of community-dwelling older adults that enrolled 112 older adults with MCI. Participants were followed up for 6 years, with biannual visits including neurologic, cognitive, and gait assessments. Data were collected from July 2007 to March 2016. Main Outcomes and Measures: Incident all-cause dementia was the main outcome measure, and single- and dual-task gait velocity and dual-task gait costs were the independent variables. A neuropsychological test battery was used to assess cognition. Gait velocity was recorded under single-task and 3 separate dual-task conditions using an electronic walkway. Dual-task gait cost was defined as the percentage change between single- and dual-task gait velocities: ([single-task gait velocity - dual-task gait velocity]/ single-task gait velocity) × 100. Cox proportional hazard models were used to estimate the association between risk of progression to dementia and the independent variables, adjusted for age, sex, education, comorbidities, and cognition. Results: Among 112 study participants with MCI, mean (SD) age was 76.6 (6.9) years, 55 were women (49.1%), and 27 progressed to dementia (24.1%), with an incidence rate of 121 per 1000 person-years. Slow single-task gait velocity (<0.8 m/second) was not associated with progression to dementia (hazard ratio [HR], 3.41; 95% CI, 0.99-11.71; P = .05)while high dual-task gait cost while counting backward (HR, 3.79; 95% CI, 1.57-9.15; P = .003) and naming animals (HR, 2.41; 95% CI, 1.04-5.59; P = .04) were associated with dementia progression (incidence rate, 155 per 1000 person-years). The models remained robust after adjusting by baseline cognition except for dual-task gait cost when dichotomized. Conclusions and Relevance: Dual-task gait is associated with progression to dementia in patients with MCI. Dual-task gait testing is easy to administer and may be used by clinicians to decide further biomarker testing, preventive strategies, and follow-up planning in patients with MCI. Trial Registration: clinicaltrials.gov: NCT03020381.


Subject(s)
Cognitive Dysfunction/physiopathology , Dementia/physiopathology , Disease Progression , Gait/physiology , Psychomotor Performance/physiology , Aged , Aged, 80 and over , Biomarkers , Female , Follow-Up Studies , Humans , Incidence , Male , Neuropsychological Tests , Risk
18.
Physiother Can ; 69(2): 142-149, 2017.
Article in English | MEDLINE | ID: mdl-28539694

ABSTRACT

Purpose: The Berg Balance Scale (BBS) is a performance-based measure of standing balance commonly used by clinicians working with individuals post-stroke. Performance on the BBS can be influenced by compensatory strategies, but measures derived from two force plates can isolate compensatory strategies and thus better indicate balance impairment. This study examined BBS scores that reflect "normal" and disordered balance with respect to dual force-plate measures of standing balance in individuals post-stroke. Methods: BBS and force-plate measures were extracted from 75 patient charts. Individuals were classified by BBS score with respect to (1) age-matched normative values and (2) values that suggested increased risk of falls. Multiple analysis of variance was used to examine the effect of group assignment on force-plate measures of standing balance. Results: Individuals with BBS scores within and below normative values did not differ in force-plate measures. Individuals with BBS scores below the falls risk cutoff loaded their affected leg less than individuals with BBS scores above the cutoff. There were no other differences in force-plate measures between these two groups. Conclusions: BBS scores indicating either normal or disordered balance function are not necessarily associated with normal or disordered quiet standing-balance control measured by two force plates. This finding suggests that the BBS may reflect a capacity for compensation rather than any underlying impairments.


Objectif : l'échelle de Berg est un outil de mesure de l'équilibre debout fréquemment utilisé par les cliniciens traitant des personnes ayant subi un AVC. Des stratégies compensatoires peuvent influencer le score Berg, même si les mesures obtenues de deux plateformes de force peuvent isoler les stratégies compensatoires et ainsi mieux détecter les troubles d'équilibre. L'objectif de cette étude était d'examiner les scores Berg indiquant un équilibre « normal ¼ et un trouble d'équilibre parallèlement aux doubles mesures des plateformes de l'équilibre debout de personnes ayant subi un AVC. Méthodologie : on a extrait le score Berg et les mesures des plateformes de 75 dossiers médicaux de patients. On a classé les personnes selon leur score Berg en tenant compte (1) des valeurs normatives appariées selon l'âge et (2) des valeurs suggérant un risque accru de chutes. On a réalisé une analyse de variance multivariée pour examiner l'effet de la répartition des groupes sur les mesures de l'équilibre debout obtenues à l'aide des plateformes. Résultats : les personnes ayant obtenu un score Berg égal ou inférieur aux valeurs normatives n'ont pas obtenu de mesures différentes sur les plateformes. Les personnes ayant obtenu un score Berg sous le seuil de risque de chute mettaient moins de charge sur la jambe touchée que les personnes ayant obtenu un score Berg au-dessus du seuil. Il n'y avait aucune autre différence dans les mesures des plateformes entre ces deux groupes. Conclusions : les scores Berg indiquant un équilibre normal ou un trouble d'équilibre ne sont pas nécessairement associés à un équilibre debout normal ou à un trouble d'équilibre debout tel que mesuré par deux plateformes de force. Ce constat suggère que l'échelle de Berg reflète la capacité de compensation plutôt que le trouble sous-jacent.

19.
PLoS One ; 12(2): e0172398, 2017.
Article in English | MEDLINE | ID: mdl-28222191

ABSTRACT

Maintaining and controlling postural balance is important for activities of daily living, with poor postural balance being predictive of future falls. This study investigated eyes open and eyes closed standing posturography with elderly adults to identify differences and determine appropriate outcome measure cut-off scores for prospective faller, single-faller, multi-faller, and non-faller classifications. 100 older adults (75.5 ± 6.7 years) stood quietly with eyes open and then eyes closed while Wii Balance Board data were collected. Range in anterior-posterior (AP) and medial-lateral (ML) center of pressure (CoP) motion; AP and ML CoP root mean square distance from mean (RMS); and AP, ML, and vector sum magnitude (VSM) CoP velocity were calculated. Romberg Quotients (RQ) were calculated for all parameters. Participants reported six-month fall history and six-month post-assessment fall occurrence. Groups were retrospective fallers (24), prospective all fallers (42), prospective fallers (22 single, 6 multiple), and prospective non-fallers (47). Non-faller RQ AP range and RQ AP RMS differed from prospective all fallers, fallers, and single fallers. Non-faller eyes closed AP velocity, eyes closed VSM velocity, RQ AP velocity, and RQ VSM velocity differed from multi-fallers. RQ calculations were particularly relevant for elderly fall risk assessments. Cut-off scores from Clinical Cut-off Score, ROC curves, and discriminant functions were clinically viable for multi-faller classification and provided better accuracy than single-faller classification. RQ AP range with cut-off score 1.64 could be used to screen for older people who may fall once. Prospective multi-faller classification with a discriminant function (-1.481 + 0.146 x Eyes Closed AP Velocity-0.114 x Eyes Closed Vector Sum Magnitude Velocity-2.027 x RQ AP Velocity + 2.877 x RQ Vector Sum Magnitude Velocity) and cut-off score 0.541 achieved an accuracy of 84.9% and is viable as a screening tool for older people at risk of multiple falls.


Subject(s)
Accidental Falls , Diagnostic Techniques, Neurological , Postural Balance , Risk Assessment/methods , Aged , Aged, 80 and over , Diagnostic Techniques, Neurological/instrumentation , Discriminant Analysis , Female , Follow-Up Studies , Humans , Male , Postural Balance/physiology , Recurrence , Retrospective Studies , Sensitivity and Specificity , Vision, Ocular
20.
Neuroscience ; 348: 143-152, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28215746

ABSTRACT

Preparation for postural instability engages cortical resources that serve to optimize compensatory balance responses. Engagement of these cortical resources in cognitive dual-task activities may impact the ability to appropriately prepare and optimize responses to instability. The purpose of this study was to determine whether cognitive dual-task activities influenced cortical activity preceding and following postural instability. Postural instability was induced using a lean-and-release paradigm in 10 healthy participants. Perturbations were either temporally predictable (PRED) or unpredictable (UNPRED) and presented with (COG) or without a cognitive dual-task, presented in blocks of trials. The electroencephalogram was recorded from multiple frontal electrode sites. EEG data were averaged over 25-35 trials across conditions. Area under the curve of pre-perturbation cortical activity and peak latency and amplitude of post-perturbation cortical activity were quantified at the Cz site and compared across conditions. Performance of the concurrent cognitive task reduced the mean (SE) magnitude of pre-perturbation cortical activity in advance of predictable bouts of postural instability (PRED: 18.7(3.0)mVms; PRED-COG; 14.0(2.3)mVms). While the level of cognitive load influenced the amplitude of the post-perturbation N1 potential in the predictable conditions, there were no changes in N1 with a cognitive dual task during unpredictable conditions (PRED: -32.1(3.2)µV; PRED-COG: -50.8(8.4)µV; UNPRED: -65.0(12.2)µV; UNPRED-COG: -64.2(12.7)µV). Performance of the cognitive task delayed and reduced the magnitude of the initial gastrocnemius response. The findings indicate that pre- and post-perturbation cortical activity is affected by a cognitive distractor when postural instability is temporally predictable. Distraction also influences associated muscle responses.


Subject(s)
Cerebral Cortex/physiology , Cognition/physiology , Postural Balance/physiology , Posture/physiology , Adult , Attention/physiology , Electroencephalography , Female , Humans , Male , Muscle, Skeletal/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...