Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Obes Surg ; 32(7): 1-12, 2022 07.
Article in English | MEDLINE | ID: mdl-35441332

ABSTRACT

PURPOSE: Roux-en-Y gastric bypass (RYGB) surgery produces significant weight loss. However, a number of patients experience weight regain years after surgery. Factors driving weight regain after surgical interventions are currently being explored. Our objective was to investigate appetite-related measures associated with weight regain after RYGB surgery. MATERIALS AND METHODS: Using a cross-sectional design, 29 participants (49.6 ± 9.1 years of age; current BMI 32.4 ± 4.7 kg/m2, 43.6 ± 8.9 months post-RYGB) were stratified into tertiles according to weight regain per month after nadir (weight maintenance (WM), n = 9; low weight regain (LWR), n = 10; and high weight regain (HWR), n = 10). The average weight regain was, by design, significantly different between the groups (WM = 2.2 ± 2.5 kg; LWR = 10.0 ± 3.4 kg; HWR = 14.9 ± 6.3 kg regained, p < 0.05). Appetite (visual analog scales), olfactory performance ("sniffin sticks"), eating behaviors (Three Factor Eating Questionnaire), food reward (Leeds Food Preference Questionnaire), and appetite-related hormones (ghrelin, PYY, GLP-1 and leptin) were measured fasting and in response to a standardized test meal. RESULTS: Dietary restraint was significantly higher than clinical cutoffs in WM and LWR (p < 0.05). As expected, significant time effects were noted for ghrelin, PYY, and GLP-1, but there were no group differences. CONCLUSION: The results suggest that appetite-related outcomes are similar across individuals who have maintained weight loss and experienced regain following RYGB.


Subject(s)
Gastric Bypass , Obesity, Morbid , Appetite/physiology , Body Weight Maintenance , Cross-Sectional Studies , Gastric Bypass/methods , Ghrelin , Glucagon-Like Peptide 1 , Humans , Obesity, Morbid/surgery , Weight Gain/physiology , Weight Loss/physiology
2.
Sci Rep ; 11(1): 12615, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135428

ABSTRACT

The physiological and molecular mechanisms linking prenatal physical activity and improvements in maternal-fetal health are unknown. It is hypothesized that small extracellular vesicles (EVs, ~ 10-120 nm) are involved in tissue cross-talk during exercise. We aimed to characterize the circulating small EV profile of pregnant versus non-pregnant women after an acute bout of moderate-intensity exercise. Pregnant (N = 10) and non-pregnant control (N = 9) women performed a single session of moderate-intensity treadmill walking for 30 min. Plasma was collected immediately pre- and post-exercise, and small EVs were isolated by differential ultracentrifugation. EV presence was confirmed by western blotting for the small EV proteins TSG-101 and flottilin-1. Small EVs were quantified by size and concentration using nanoparticle tracking analysis and transmission electron microscopy. All EV fractions were positive for TSG-101 and flotillin-1, and negative for calnexin. Mean vesicle size at baseline and percent change in size post-exercise were not different between groups. At baseline, pregnant women had higher levels of small EVs compared to controls (1.83E+10 ± 1.25E+10 particles/mL vs. 8.11E+09 ± 4.04E+09 particles/mL, respectively; p = 0.032). Post-exercise, small EVs increased significantly in the circulation of pregnant compared to non-pregnant women after correcting for baseline values (64.7 ± 24.6% vs. - 23.3 ± 26.1%, respectively; F = 5.305, p = 0.035). Further research is needed to assess the functional roles of exercise-induced small EVs in pregnancy.


Subject(s)
Calnexin/metabolism , DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Exercise Test/methods , Extracellular Vesicles/metabolism , Membrane Proteins/metabolism , Plasma/metabolism , Transcription Factors/metabolism , Adult , Case-Control Studies , Female , Gene Expression Regulation , Humans , Microscopy, Electron, Transmission , Particle Size , Pregnancy , Pregnant Women , Ultracentrifugation , Young Adult
3.
Obes Rev ; 21(3): e12978, 2020 03.
Article in English | MEDLINE | ID: mdl-31863637

ABSTRACT

For humans to maintain a stable core temperature in cold environments, an increase in energy expenditure (EE) is required. However, little is known about how cold stimulus impacts energy balance as a whole, as energy intake (EI) has been largely overlooked. This review focuses on the current state of knowledge regarding how cold exposure (CE) impacts both EE and EI, while highlighting key gaps and shortcomings in the literature. Animal models clearly reveal that CE produces large increases in EE, while decreasing environmental temperatures results in a significant negative dose-response effect in EI (r=-.787, P<.001), meaning animals eat more as temperature decreases. In humans, multiple methods are used to administer cold stimuli, which result in consistent yet quantitatively small increases in EE. However, only two studies have measured ad libitum food intake in combination with acute CE in humans. Chronic CE (i.e., cold acclimation) studies have been shown to produce minimal changes in body weight, with an average compensation of ~126%. Although more studies are required to investigate how cold impacts EI in humans, results presented in this review warrant caution before presenting or considering CE as a potential adjunct to weight loss strategies.


Subject(s)
Cold Temperature , Energy Intake/physiology , Energy Metabolism/physiology , Thermogenesis/physiology , Humans
4.
Front Physiol ; 10: 1188, 2019.
Article in English | MEDLINE | ID: mdl-31649549

ABSTRACT

BACKGROUND: It is recommended that women accumulate 150-min of weekly moderate-intensity physical activity (MPA) when pregnant. Engaging in regular physical activity (PA) confers many health benefits to both the mother and the fetus. However, the molecular mechanisms by which these health benefits are bestowed are not well understood. One potential factor that may be contributing to the observed benefits is myokines, which are small peptides secreted by skeletal muscles. In the non-pregnant population, myokines are believed to be involved in the molecular mechanisms resulting from PA. The objective of this study was to characterize and compare the myokine profile of pregnant and non-pregnant women, after an acute bout of MPA. METHODS: Pregnant (n = 13) and non-pregnant (n = 17) women were recruited from the Ottawa region to undergo a treadmill walking session at moderate-intensity (40-60% heart rate reserve). Pre- and post-exercise serum samples were taken, and a set of 15 myokines were analyzed although only 10 were detected. IL-6 was analyzed using a high-sensitivity assay, while FGF21, EPO, BDNF, Fractalkine, IL-15, SPARC, FABP-3, FSTL-1, and oncostatin were analyzed using various multiplex assays. RESULTS: The pregnant and non-pregnant groups did not differ in terms of age, height, non/pre-pregnancy weight, BMI, and resting heart rate. Baseline levels of EPO and oncostatin were higher in the pregnant group while FGF21 was higher in the non-pregnant group. Circulating levels of three myokines, FGF21, EPO, and IL-15 significantly increased in response to the acute exercise in the pregnant group. Non-pregnant women exhibited an increase in three myokines, FABP-3, FSTL-1, and oncostatin, while one myokine, EPO, decreased post-exercise. SPARC, fractalkine and BDNF were shown to increase post-exercise regardless of pregnancy status while the response for BDNF was more pronounced in the non-pregnant group. CONCLUSION: This is the first study examining myokine response following an acute bout of PA in pregnancy. Moderate intensity PA, which is recommended during pregnancy, elicited an increase in four myokines post-compared to pre-exercise in the pregnant group. Further research is warranted to understand the role of myokines in pregnancy.

SELECTION OF CITATIONS
SEARCH DETAIL
...