Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 17(10): e1009463, 2021 10.
Article in English | MEDLINE | ID: mdl-34710081

ABSTRACT

Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.


Subject(s)
Crowdsourcing/methods , Gene Ontology , Molecular Sequence Annotation/methods , Computational Biology , Databases, Genetic , Humans , Proteins/genetics , Proteins/physiology
2.
Nucleic Acids Res ; 42(Database issue): D677-84, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24285306

ABSTRACT

PortEco (http://porteco.org) aims to collect, curate and provide data and analysis tools to support basic biological research in Escherichia coli (and eventually other bacterial systems). PortEco is implemented as a 'virtual' model organism database that provides a single unified interface to the user, while integrating information from a variety of sources. The main focus of PortEco is to enable broad use of the growing number of high-throughput experiments available for E. coli, and to leverage community annotation through the EcoliWiki and GONUTS systems. Currently, PortEco includes curated data from hundreds of genome-wide RNA expression studies, from high-throughput phenotyping of single-gene knockouts under hundreds of annotated conditions, from chromatin immunoprecipitation experiments for tens of different DNA-binding factors and from ribosome profiling experiments that yield insights into protein expression. Conditions have been annotated with a consistent vocabulary, and data have been consistently normalized to enable users to find, compare and interpret relevant experiments. PortEco includes tools for data analysis, including clustering, enrichment analysis and exploration via genome browsers. PortEco search and data analysis tools are extensively linked to the curated gene, metabolic pathway and regulation content at its sister site, EcoCyc.


Subject(s)
Databases, Genetic , Escherichia coli/genetics , Alleles , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Genes, Bacterial , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Internet , Phenotype , RNA, Messenger/metabolism , Ribosomes/metabolism , Software
3.
Nucleic Acids Res ; 40(Database issue): D1262-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22110029

ABSTRACT

The Gene Ontology Normal Usage Tracking System (GONUTS) is a community-based browser and usage guide for Gene Ontology (GO) terms and a community system for general GO annotation of proteins. GONUTS uses wiki technology to allow registered users to share and edit notes on the use of each term in GO, and to contribute annotations for specific genes of interest. By providing a site for generation of third-party documentation at the granularity of individual terms, GONUTS complements the official documentation of the Gene Ontology Consortium. To provide examples for community users, GONUTS displays the complete GO annotations from seven model organisms: Saccharomyces cerevisiae, Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus and Arabidopsis thaliana. To support community annotation, GONUTS allows automated creation of gene pages for gene products in UniProt. GONUTS will improve the consistency of annotation efforts across genome projects, and should be useful in training new annotators and consumers in the production of GO annotations and the use of GO terms. GONUTS can be accessed at http://gowiki.tamu.edu. The source code for generating the content of GONUTS is available upon request.


Subject(s)
Databases, Nucleic Acid , Molecular Sequence Annotation , Proteins/genetics , Software , Vocabulary, Controlled , Animals , Genes , Internet , Mice
4.
Nucleic Acids Res ; 40(Database issue): D1270-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22064863

ABSTRACT

EcoliWiki is the community annotation component of the PortEco (http://porteco.org; formerly EcoliHub) project, an online data resource that integrates information on laboratory strains of Escherichia coli, its phages, plasmids and mobile genetic elements. As one of the early adopters of the wiki approach to model organism databases, EcoliWiki was designed to not only facilitate community-driven sharing of biological knowledge about E. coli as a model organism, but also to be interoperable with other data resources. EcoliWiki content currently covers genes from five laboratory E. coli strains, 21 bacteriophage genomes, F plasmid and eight transposons. EcoliWiki integrates the Mediawiki wiki platform with other open-source software tools and in-house software development to extend how wikis can be used for model organism databases. EcoliWiki can be accessed online at http://ecoliwiki.net.


Subject(s)
Databases, Genetic , Escherichia coli/genetics , Coliphages/genetics , Genes, Bacterial , Internet , Interspersed Repetitive Sequences , Molecular Sequence Annotation , Plasmids/genetics , Software , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...