Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Psychophysiol ; 196: 112274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049075

ABSTRACT

BACKGROUND: Intolerance to psychological distress is associated with various forms of psychopathology, ranging from addiction to mood disturbance. The capacity to withstand aversive affective states is often explained by individual differences in cardiovagal tone as well as resting state connectivity of the ventromedial prefrontal cortex (vmPFC), a region involved in the regulation of emotions and cardio-autonomic tone. However, it is unclear which brain regions involved in distress tolerance show greater resting state functional connectivity (rsFC) as a function of resting heart rate variability (HRV). METHODS: One-hundred and twenty-six adults, aged 20 to 83.5 years, were selected from a lifespan cohort at the Nathan Kline Institute-Rockland Sample. Participants' distress tolerance levels were assessed based upon performance on the Behavioral Indicator of Resiliency to Distress (BIRD) task. Artifact-free resting-state functional brain scans collected during separate sessions were used. While inside the scanner, a pulse oximeter was used to record beat-to-beat intervals to derive high-frequency heart rate variability (HF-HRV). The relationship between HF-HRV and vmPFC to whole brain functional connectivity was compared between distress tolerant (BIRD completers) and distress intolerant (BIRD non-completers). RESULTS: Groups did not differ in their history of psychiatric diagnosis. Higher resting HF-HRV was associated with longer total time spent on the BIRD task for the entire sample (r = 0.255, p = 0.004). After controlling for age, gender, body mass index, head motion, and gray matter volume. Distress tolerant individuals showed greater rsFC (p < 0.005 (uncorrected), k = 20) between the vmPFC and default-mode network (DMN) hubs including posterior cingulate cortex/precuneus, medial temporal lobes, and the parahippocampal cortex. As a function of higher resting HF-HRV greater vmPFC connectivity was observed with sub-threshold regions in the right amygdala and left anterior prefrontal cortex, with the former passing small volume correction, in distress tolerant versus distress intolerant individuals. CONCLUSION: In a lifespan sample of community-dwelling adults, distress tolerant individuals showed greater vmPFC connectivity with anterior and posterior hubs of the DMN compared to distress intolerant individuals. As a function of greater HF-HRV, distress tolerant individuals evidenced greater vmPFC with salience and executive control network hubs. These findings are consistent with deficits in neural resource allocation within a triple network resting amongst persons exhibiting behavioral intolerance to psychological distress.


Subject(s)
Magnetic Resonance Imaging , Prefrontal Cortex , Adult , Humans , Prefrontal Cortex/physiology , Brain , Amygdala/diagnostic imaging , Cerebral Cortex , Brain Mapping , Neural Pathways
2.
Respir Physiol Neurobiol ; 277: 103427, 2020 06.
Article in English | MEDLINE | ID: mdl-32120012

ABSTRACT

There is neuroanatomical evidence of an "extended fear network" of brain structures involved in the etiology of panic disorder (PD). Although ventilatory distrubance is a primary symptom of PD these sensations may also trigger onset of a panic attack (PA). Here, a voluntary breath-holding paradigm was used to mimic the hypercapnia state in order to compare blood oxygen level-dependent (BOLD) response, at the peak of a series of 18 s breath-holds, of 21 individuals with PD to 21 low anxiety matched controls. Compared to the rest condition, BOLD activity at the peak (12 - 18 s) of the breath-hold was greater for PD versus controls within a number of structures implicated in the extended fear network, including hippocampus, thalamus, and brainstem. Activation was also observed in cortical structures that are shown to be involved in interoceptive and self-referential processing, such as right insula, middle frontal gyrus, and precuneus/posterior cingulate. In lieu of amygdala activation, our findings show elevated activity throughout an extended network of cortical and subcortical structures involved in contextual, interoceptive and self-referential processing when individuals with PD engage in voluntary breath-holding.


Subject(s)
Breath Holding , Fear/physiology , Healthy Volunteers , Oxygen Consumption/physiology , Panic Disorder/diagnostic imaging , Panic Disorder/metabolism , Adolescent , Adult , Fear/psychology , Female , Healthy Volunteers/psychology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Panic Disorder/psychology , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...