Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci ; 36(21): 2455-2463, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29644914

ABSTRACT

Analysing player kinematics during a match using "gold-standard" 3D video-based motion analysis techniques is a difficult prospect indeed. The development of small, wireless, wearable sensors offers the potential to reduce the challenges of measuring kinematics during match-play without hindering performance. The present study examined the viability of using wireless tri-axial accelerometers to examine whether key performance measures of drag flicks executed by expert specialist drag-flickers are predicted by the kinematics of the striking phase. Linear mixed models were used to examine whether the speed and accuracy of players' drag flicks were predicted by the duration of stick-ball contact, and the kinematics of the lead lower limb at stick-ball contact and ball release. Results revealed that stick and lead lower limb kinematics significantly predicted shot accuracy but not shot speed. Shorter drag-time predicted more accurate flicks (p = 0.03) as did a more vertical leg at stick-ball contact (p = 0.016) and a more horizontal thigh at ball release (p = 0.001). This may indicate that there are more ways to produce fast drag flicks than accurate ones. This study illustrates that wireless tri-axial accelerometers can be used on-field to measure the effects of kinematics on key performance measures.


Subject(s)
Accelerometry/instrumentation , Hockey/physiology , Lower Extremity/physiology , Motor Skills/physiology , Wearable Electronic Devices , Adult , Biomechanical Phenomena , Humans , Male , Muscle Fatigue/physiology , Time and Motion Studies
2.
J Sports Sci ; 35(6): 602-609, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27388636

ABSTRACT

Research has revealed that individual soccer goalkeepers respond differently to penalty shots, depending on their specific perceptual and motor capabilities. However, it remains unclear whether analogous differences exist between individual penalty takers, and if specialising in penalty taking affects the occurrence of differences between individuals. The present study examined individual differences in penalty shot speed and accuracy for specialists in penalty taking versus non-specialists. Expert specialist field hockey drag flickers and equivalently skilled non-specialists performed drag flicks towards predetermined targets placed in the face of a standard field hockey goal. Comparisons in shot speed and accuracy were made at a group level (specialists vs. non-specialists) as well as between individuals. Results revealed differences in both speed and accuracy between specialists, but only differences in speed between non-specialists. Specialists generated significantly greater shot speed than non-specialists (P < .001) and were more accurate to some, but not all, targets (top left, P < .006, bottom left P < .001). In addition, it was found that in specialists increasing practice correlated with decreasing accuracy. This may indicate that excessive practice could potentially reduce a specialist's accuracy in shooting towards specific targets.


Subject(s)
Hockey/physiology , Motor Skills/physiology , Athletic Performance/physiology , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...