Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 116(5): 1934-1938, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37478407

ABSTRACT

Wireworms (Coleoptera: Elateridae) are economically significant pests of potatoes (Solanum tuberosum), damaging the marketable portion of the crop by feeding and tunneling into tubers. While conventional potato growers use the few registered synthetic insecticides to control wireworms, certified organic growers are left with less options due to the limited effectiveness of the available insecticides. Biologically derived pesticides provide an additional alternative for both systems. Certain gram-negative proteobacteria, such as Burkholderia spp., possess insecticidal compounds. However, very little is known about their efficacy on wireworms. From 2018 to 2021, we conducted experiments in Virginia to assess the efficacy of a Burkholderia spp.-based commercial pesticide, Majestene, as a wireworm control in potatoes. In a lab experiment, soil drench application of this insecticide at a rate of 66 g a.i. per 1 liter resulted in 30% wireworm mortality and significantly reduced wireworm feeding damage on potato tubers. In the field, in-furrow applications of Burkholderia spp. at a rate of 17.66 kg a.i. per ha significantly reduced wireworm damage to tubers in 2 of 7 field experiments conducted. By comparison, the commercial standard insecticide, bifenthrin, significantly reduced tuber damage in 3 of the 7 field experiments. Our study demonstrates the prospect for proteobacteria-derived insecticides for control of wireworms and potentially other soil-dwelling insects. In conclusion, findings present growers with another option to combat wireworm pressure, especially in organic systems.


Subject(s)
Coleoptera , Insecticides , Solanum tuberosum , Animals , Larva/microbiology , Biological Control Agents , Soil
2.
Front Insect Sci ; 3: 1137082, 2023.
Article in English | MEDLINE | ID: mdl-38469497

ABSTRACT

The spotted lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae), was first detected in the United States in Berks County, Pennsylvania, in 2014. Native to China, this phloem-feeding planthopper threatens agricultural, ornamental, nursery, and timber industries in its invaded range through quarantine restrictions on shipments, as well as impacts on plants themselves. The long-term impacts of L. delicatula feeding on tree species have not been well studied in North America. Using standard dendrochronological methods on cores taken from trees with differing levels of L. delicatula infestation and systemic insecticidal control, we quantified the impact of L. delicatula feeding on the annual growth of four tree species in Pennsylvania: Ailanthus altissima, Juglans nigra, Liriodendron tulipifera, and Acer rubrum. The results suggest that L. delicatula feeding is associated with the diminished growth of A. altissima, but no change was observed in any other tree species tested. The results also suggest that systemic insecticides mitigate the impact of L. delicatula feeding on A. altissima growth.

3.
J Econ Entomol ; 115(3): 808-813, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35385116

ABSTRACT

The squash bug, Anasa tristis (De Geer), is a serious pest of cucurbit crops across the United States, especially within summer squash (Cucurbita pepo L.) systems. Using their piercing sucking mouthparts, squash bugs feed on both leaf tissue and fruits, often leading to leaf necrosis, marketable fruit loss, and even plant death. To date, the relationship between squash bug presence and plasticulture has not been adequately investigated. This 2-yr study evaluated the effects of white, black, and reflective plastic mulch colors on the occurrence of all squash bug life stages and marketable zucchini yield in Virginia. In both years, A. tristis adults and egg masses were more numerous on zucchini plants grown in white and reflective plastic mulch compared to bare ground plants. Greater nymphal densities and marketable fruit yield were observed in certain plastic mulch treatments versus the bare ground treatment, yet these differences were not consistent in both years. Contrary to the repellency effects reflective mulches have on other cucurbit insect pests, our research suggests that reflective and other plastic mulch colors can negatively impact squash bug management, especially in regions with high A. tristis pressure. Our study offers new insights for cucurbit growers to use when considering whether they should implement plasticulture in their growing systems.


Subject(s)
Cucurbita , Cucurbitaceae , Heteroptera , Animals , Color , Plastics , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...