Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Immunity ; 56(3): 606-619.e7, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36750100

ABSTRACT

Although mice normally enter labor when their ovaries stop producing progesterone (luteolysis), parturition can also be triggered in this species through uterus-intrinsic pathways potentially analogous to the ones that trigger parturition in humans. Such pathways, however, remain largely undefined in both species. Here, we report that mice deficient in innate type 2 immunity experienced profound parturition delays when manipulated endocrinologically to circumvent luteolysis, thus obliging them to enter labor through uterus-intrinsic pathways. We found that these pathways were in part driven by the alarmin IL-33 produced by uterine interstitial fibroblasts. We also implicated important roles for uterine group 2 innate lymphoid cells, which demonstrated IL-33-dependent activation prior to labor onset, and eosinophils, which displayed evidence of elevated turnover in the prepartum uterus. These findings reveal a role for innate type 2 immunity in controlling the timing of labor onset through a cascade potentially relevant to human parturition.


Subject(s)
Interleukin-33 , Luteolysis , Pregnancy , Female , Mice , Animals , Humans , Interleukin-33/metabolism , Immunity, Innate , Myometrium/metabolism , Lymphocytes , Parturition/metabolism
2.
PLoS Pathog ; 16(10): e1008997, 2020 10.
Article in English | MEDLINE | ID: mdl-33085728

ABSTRACT

Vγ9Vδ2 T cells rapidly respond to phosphoantigens produced by Plasmodium falciparum in an innate-like manner, without prior antigen exposure or processing. Vδ2 T cells have been shown to inhibit parasite replication in vitro and are associated with protection from P. falciparum parasitemia in vivo. Although a marked expansion of Vδ2 T cells is seen after acute malaria infection in naïve individuals, repeated malaria causes Vδ2 T cells to decline both in frequency and in malaria-responsiveness, and to exhibit numerous transcriptional and phenotypic changes, including upregulation of the Fc receptor CD16. Here we investigate the functional role of CD16 on Vδ2 T cells in the immune response to malaria. We show that CD16+ Vδ2 T cells possess more cytolytic potential than their CD16- counterparts, and bear many of the hallmarks of mature NK cells, including KIR expression. Furthermore, we demonstrate that Vδ2 T cells from heavily malaria-exposed individuals are able to respond to opsonized P.falciparum-infected red blood cells through CD16, representing a second, distinct pathway by which Vδ2 T cells may contribute to anti-parasite effector functions. This response was independent of TCR engagement, as demonstrated by blockade of the phosphoantigen presenting molecule Butyrophilin 3A1. Together these results indicate that Vδ2 T cells in heavily malaria-exposed individuals retain the capacity for antimalarial effector function, and demonstrate their activation by opsonized parasite antigen. This represents a new role both for Vδ2 T cells and for opsonizing antibodies in parasite clearance, emphasizing cooperation between the cellular and humoral arms of the immune system.


Subject(s)
Malaria, Falciparum/immunology , Malaria/immunology , Receptors, IgG/immunology , T-Lymphocytes/immunology , Adult , Child , Child, Preschool , Female , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Immunity , Infant , Malaria/blood , Malaria/parasitology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Male , Middle Aged , Parasitemia/immunology , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Receptors, IgG/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocytes/metabolism , Uganda/epidemiology
3.
Sci Transl Med ; 10(463)2018 10 17.
Article in English | MEDLINE | ID: mdl-30333241

ABSTRACT

Malaria remains a significant cause of morbidity and mortality worldwide, particularly in infants and children. Some studies have reported that exposure to malaria antigens in utero results in the development of tolerance, which could contribute to poor immunity to malaria in early life. However, the effector T cell response to pathogen-derived antigens encountered in utero, including malaria, has not been well characterized. Here, we assessed the frequency, phenotype, and function of cord blood T cells from Ugandan infants born to mothers with and without placental malaria. We found that infants born to mothers with active placental malaria had elevated frequencies of proliferating effector memory fetal CD4+ T cells and higher frequencies of CD4+ and CD8+ T cells that produced inflammatory cytokines. Fetal CD4+ and CD8+ T cells from placental malaria-exposed infants exhibited greater in vitro proliferation to malaria antigens. Malaria-specific CD4+ T cell proliferation correlated with prospective protection from malaria during childhood. These data demonstrate that placental malaria is associated with the generation of proinflammatory malaria-responsive fetal T cells. These findings add to our current understanding of fetal immunity and indicate that a functional and protective pathogen-specific T cell response can be generated in utero.


Subject(s)
Cross-Priming/immunology , Malaria/immunology , T-Lymphocytes/immunology , Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cytokines/metabolism , Female , Fetus/immunology , Humans , Immunologic Memory , Infant , Inflammation Mediators/metabolism , Peptides/immunology , Pregnancy
4.
Front Immunol ; 8: 1329, 2017.
Article in English | MEDLINE | ID: mdl-29097996

ABSTRACT

Cytokine-producing CD4 T cells have important roles in immunity against Plasmodium falciparum (Pf) malaria. However, the factors influencing functional differentiation of Pf-specific CD4 T cells in naturally exposed children are not well understood. Moreover, it is not known which CD4 T-cell cytokine-producing subsets are most critical for protection. We measured Pf-specific IFNγ-, IL10-, and TNFα-producing CD4 T-cell responses by multi-parametric flow cytometry in 265 children aged 6 months to 10 years enrolled in a longitudinal observational cohort in a high malaria transmission site in Uganda. We found that both age and parasite burden were independently associated with cytokine production by CD4 T cells. IL10 production by IFNγ+ CD4 T cells was higher in younger children and in those with high-parasite burden during recent infection. To investigate the role of CD4 T cells in immunity to malaria, we measured associations of Pf-specific CD4 cytokine-producing cells with the prospective risk of Pf infection and clinical malaria, adjusting for household exposure to Pf-infected mosquitos. Overall, the prospective risk of infection was not associated with the total frequency of Pf-specific CD4 T cells, nor of any cytokine-producing CD4 subset. However, the frequency of CD4 cells producing IL10 but not inflammatory cytokines (IFNγ and TNFα) was associated with a decreased risk of clinical malaria once infected. These data suggest that functional polarization of the CD4 T-cell response may modulate the clinical manifestations of malaria and play a role in naturally acquired immunity.

5.
Sci Rep ; 7(1): 11487, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28904345

ABSTRACT

Vδ2+ γδ T cells are semi-innate T cells that expand markedly following P. falciparum (Pf) infection in naïve adults, but are lost and become dysfunctional among children repeatedly exposed to malaria. The role of these cells in mediating clinical immunity (i.e. protection against symptoms) to malaria remains unclear. We measured Vδ2+ T cell absolute counts at acute and convalescent malaria timepoints (n = 43), and Vδ2+ counts, cellular phenotype, and cytokine production following in vitro stimulation at asymptomatic visits (n = 377), among children aged 6 months to 10 years living in Uganda. Increasing age was associated with diminished in vivo expansion following malaria, and lower Vδ2 absolute counts overall, among children living in a high transmission setting. Microscopic parasitemia and expression of the immunoregulatory markers Tim-3 and CD57 were associated with diminished Vδ2+ T cell pro-inflammatory cytokine production. Higher Vδ2 pro-inflammatory cytokine production was associated with protection from subsequent Pf infection, but also with an increased odds of symptoms once infected. Vδ2+ T cells may play a role in preventing malaria infection in children living in endemic settings; progressive loss and dysfunction of these cells may represent a disease tolerance mechanism that contributes to the development of clinical immunity to malaria.


Subject(s)
Malaria/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Age Factors , Biomarkers , Child , Child, Preschool , Cytokines/biosynthesis , Humans , Lymphocyte Count , Malaria/diagnosis , Malaria/metabolism , Malaria/parasitology , Parasitemia/immunology , Parasitemia/metabolism , Parasitemia/parasitology , Plasmodium falciparum/immunology
6.
Open Forum Infect Dis ; 4(1): ofx022, 2017.
Article in English | MEDLINE | ID: mdl-28480292

ABSTRACT

Sex differences in the immune response and in infectious disease susceptibility have been well described, although the mechanisms underlying these differences remain incompletely understood. We evaluated the frequency of cord blood CD4 T cell subsets in a highly malaria-exposed birth cohort of mother-infant pairs in Uganda by sex. We found that frequencies of cord blood regulatory T cell ([Treg] CD4+CD25+FoxP3+CD127lo/-) differed by infant sex, with significantly lower frequencies of Tregs in female than in male neonates (P = .006). When stratified by in utero malaria exposure status, this difference was observed in the exposed, but not in the unexposed infants.

7.
Malar J ; 15(1): 497, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27717402

ABSTRACT

BACKGROUND: In malaria-endemic areas, the first exposure to malaria antigens often occurs in utero when the fetal immune system is poised towards the development of tolerance. Children exposed to placental malaria have an increased risk of clinical malaria in the first few years of life compared to unexposed children. Recent work has suggested the potential of pregnancy-associated malaria to induce immune tolerance in children living in malaria-endemic areas. A study was completed to evaluate the effect of malaria exposure during pregnancy on fetal immune tolerance and effector responses. METHODS: Using cord blood samples from a cohort of mother-infant pairs followed from early in pregnancy until delivery, flow cytometry analysis was completed to assess the relationship between pregnancy-associated malaria and fetal cord blood CD4 and dendritic cell phenotypes. RESULTS: Cord blood FoxP3+ Treg counts were higher in infants born to mothers with Plasmodium parasitaemia early in pregnancy (12-20 weeks of gestation; p = 0.048), but there was no association between Treg counts and the presence of parasites in the placenta at the time of delivery (by loop-mediated isothermal amplification (LAMP); p = 0.810). In contrast, higher frequencies of activated CD4 T cells (CD25+FoxP3-CD127+) were observed in the cord blood of neonates with active placental Plasmodium infection at the time of delivery (p = 0.035). This population exhibited evidence of effector memory differentiation, suggesting priming of effector T cells in utero. Lastly, myeloid dendritic cells were higher in the cord blood of infants with histopathologic evidence of placental malaria (p < 0.0001). CONCLUSION: Together, these data indicate that in utero exposure to malaria drives expansion of both regulatory and effector T cells in the fetus, and that the timing of this exposure has a pivotal role in determining the polarization of the fetal immune response.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Malaria/immunology , Placenta Diseases/immunology , Plasmodium/immunology , Pregnancy Complications, Infectious/immunology , Cohort Studies , Dendritic Cells/immunology , Female , Fetal Blood/immunology , Flow Cytometry , Humans , Immunophenotyping , Infant, Newborn , Pregnancy , Young Adult
8.
PLoS One ; 11(9): e0162132, 2016.
Article in English | MEDLINE | ID: mdl-27583554

ABSTRACT

In humans, immunity to Plasmodium sp. generally takes the form of protection from symptomatic malaria (i.e., 'clinical immunity') rather than infection ('sterilizing immunity'). In contrast, mice infected with Plasmodium develop sterilizing immunity, hindering progress in understanding the mechanistic basis of clinical immunity. Here we present a novel model in which mice persistently infected with P. chabaudi exhibit limited clinical symptoms despite sustaining patent parasite burdens for many months. Characterization of immune responses in persistently infected mice revealed development of CD4+ T cell exhaustion, increased production of IL-10, and expansion of B cells with an atypical surface phenotype. Additionally, persistently infected mice displayed a dramatic increase in circulating nonclassical monocytes, a phenomenon that we also observed in humans with both chronic Plasmodium exposure and asymptomatic infection. Following pharmacological clearance of infection, previously persistently infected mice could not control a secondary challenge, indicating that persistent infection disrupts the sterilizing immunity that typically develops in mouse models of acute infection. This study establishes an animal model of asymptomatic, persistent Plasmodium infection that recapitulates several central aspects of the immune response in chronically exposed humans. As such, it provides a novel tool for dissection of immune responses that may prevent development of sterilizing immunity and limit pathology during infection.


Subject(s)
Disease Models, Animal , Parasitemia/parasitology , Plasmodium chabaudi/isolation & purification , Animals , Child , Child, Preschool , Chronic Disease , Humans , Infant , Mice , Mice, Inbred C57BL
9.
J Infect Dis ; 214(2): 329-38, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27067196

ABSTRACT

BACKGROUND: Experimental inoculation of viable Plasmodium falciparum sporozoites administered with chemoprevention targeting blood-stage parasites results in protective immunity. It is unclear whether chemoprevention similarly enhances immunity following natural exposure to malaria. METHODS: We assessed P. falciparum-specific T-cell responses among Ugandan children who were randomly assigned to receive monthly dihydroartemisinin-piperaquine (DP; n = 87) or no chemoprevention (n = 90) from 6 to 24 months of age, with pharmacologic assessments for adherence, and then clinically followed for an additional year. RESULTS: During the intervention, monthly DP reduced malaria episodes by 55% overall (P < .001) and by 97% among children who were highly adherent to DP (P < .001). In the year after the cessation of chemoprevention, children who were highly adherent to DP had a 55% reduction in malaria incidence as compared to children given no chemoprevention (P = .004). Children randomly assigned to receive DP had higher frequencies of blood-stage specific CD4(+) T cells coproducing interleukin-2 and tumor necrosis factor α (P = .003), which were associated with protection from subsequent clinical malaria and parasitemia, and fewer blood-stage specific CD4(+) T cells coproducing interleukin-10 and interferon γ (P = .001), which were associated with increased risk of malaria. CONCLUSIONS: In this setting, effective antimalarial chemoprevention fostered the development of CD4(+) T cells that coproduced interleukin 2 and tumor necrosis factor α and were associated with prospective protection, while limiting CD4(+) T-cell production of the immunoregulatory cytokine IL-10.


Subject(s)
Antimalarials/administration & dosage , CD4-Positive T-Lymphocytes/immunology , Chemoprevention/methods , Interleukin-10/metabolism , Malaria, Falciparum/pathology , Malaria, Falciparum/prevention & control , Adolescent , Adult , Artemisinins/administration & dosage , Child, Preschool , Female , Humans , Infant , Male , Quinolines/administration & dosage , Uganda , Young Adult
10.
J Infect Dis ; 213(9): 1483-90, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26667315

ABSTRACT

γδ T cells expressing Vδ2 may be instrumental in the control of malaria, because they inhibit the replication of blood-stage parasites in vitro and expand during acute malaria infection. However, Vδ2 T-cell frequencies and function are lower among children with heavy prior malaria exposure. It remains unclear whether malaria itself is driving this loss. Here we measure Vδ2 T-cell frequency, cytokine production, and degranulation longitudinally in Ugandan children enrolled in a malaria chemoprevention trial from 6 to 36 months of age. We observed a progressive attenuation of the Vδ2 response only among children incurring high rates of malaria. Unresponsive Vδ2 T cells were marked by expression of CD16, which was elevated in the setting of high malaria transmission. Moreover, chemoprevention during early childhood prevented the development of dysfunctional Vδ2 T cells. These observations provide insight into the role of Vδ2 T cells in the immune response to chronic malaria.


Subject(s)
Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, IgG/immunology , T-Lymphocyte Subsets/immunology , Up-Regulation/immunology , Artemisinins/administration & dosage , Child, Preschool , Drug Combinations , GPI-Linked Proteins/immunology , Humans , Immune Tolerance , Infant , Longitudinal Studies , Pyrimethamine/administration & dosage , Quinolines/administration & dosage , Sulfadoxine/administration & dosage
11.
PLoS Pathog ; 11(7): e1005041, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26182204

ABSTRACT

FoxP3+ regulatory CD4 T cells (Tregs) help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations.


Subject(s)
Malaria, Falciparum/immunology , Malaria/immunology , Plasmodium falciparum/physiology , T-Lymphocytes, Regulatory/cytology , Child , Child, Preschool , Forkhead Transcription Factors/immunology , Humans , Infant , Malaria/parasitology , T-Lymphocytes, Regulatory/immunology , Uganda/epidemiology
12.
J Infect Dis ; 212(3): 416-25, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25646355

ABSTRACT

BACKGROUND: Mechanisms mediating immunity to malaria remain unclear, but animal data and experimental human vaccination models suggest a critical role for CD4(+) T cells. Advances in multiparametric flow cytometry have revealed that the functional quality of pathogen-specific CD4(+) T cells determines immune protection in many infectious models. Little is known about the functional characteristics of Plasmodium-specific CD4(+) T-cell responses in immune and nonimmune individuals. METHODS: We compared T-cell responses to Plasmodium falciparum among household-matched children and adults residing in settings of high or low malaria transmission in Uganda. Peripheral blood mononuclear cells were stimulated with P. falciparum antigen, and interferon γ (IFN-γ), interleukin 2, interleukin 10, and tumor necrosis factor α (TNF-α) production was analyzed via multiparametric flow cytometry. RESULTS: We found that the magnitude of the CD4(+) T-cell responses was greater in areas of high transmission but similar between children and adults in each setting type. In the high-transmission setting, most P. falciparum-specific CD4(+) T-cells in children produced interleukin 10, while responses in adults were dominated by IFN-γ and TNF-α. In contrast, in the low-transmission setting, responses in both children and adults were dominated by IFN-γ and TNF-α. CONCLUSIONS: These findings highlight major differences in the CD4(+) T-cell response of immune adults and nonimmune children that may be relevant for immune protection from malaria.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adult , Child , Child, Preschool , Endemic Diseases , Female , Humans , Interferon-gamma/blood , Interleukin-10/blood , Longitudinal Studies , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Middle Aged , Phenotype , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...