Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 90: 129331, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37187252

ABSTRACT

The post-transcriptional modifier tRNA-(N1G37) methyltransferase (TrmD) has been proposed to be essential for growth in many Gram-negative and Gram-positive pathogens, however previously reported inhibitors show only weak antibacterial activity. In this work, optimisation of fragment hits resulted in compounds with low nanomolar TrmD inhibition incorporating features designed to enhance bacterial permeability and covering a range of physicochemical space. The resulting lack of significant antibacterial activity suggests that whilst TrmD is highly ligandable, its essentiality and druggability are called into question.


Subject(s)
Methyltransferases , tRNA Methyltransferases , tRNA Methyltransferases/chemistry , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Endocr Connect ; 11(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36515667

ABSTRACT

The overproduction of adrenocorticotropic hormone (ACTH), in conditions such as Cushing's disease and congenital adrenal hyperplasia (CAH), leads to significant morbidity. Current treatment with glucocorticoids does not adequately suppress plasma ACTH, resulting in excess adrenal androgen production. At present, there is no effective medical treatment in clinical use that would directly block the action of ACTH. Such a therapy would be of great clinical value. ACTH acts via a highly selective receptor, the melanocortin-2 receptor (MC2R) associated with its accessory protein MRAP. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and the high degree of ligand specificity suggest that antagonism of this receptor could provide a useful therapeutic strategy in the treatment of conditions of ACTH excess. To this end, we screened an extensive library of low-molecular-weight drug-like compounds for MC2R antagonist activity using a high-throughput homogeneous time-resolved fluorescence cAMP assay in Chinese hamster ovary cells stably co-expressing human MC2R and MRAP. Hits that demonstrated MC2R antagonist properties were counter-screened against the ß2 adrenergic receptor and dose-response analysis undertaken. This led to the identification of a highly specific MC2R antagonist capable of antagonising ACTH-induced progesterone release in murine Y-1 adrenal cells and having selectivity for MC2R amongst the human melanocortin receptors. This work provides a foundation for the clinical investigation of small-molecule ACTH antagonists as therapeutic agents and proof of concept for the screening and discovery of such compounds.

3.
Article in English | MEDLINE | ID: mdl-27547198

ABSTRACT

Adrenocorticotropin (ACTH) acts via a highly selective receptor that is a member of the melanocortin receptor subfamily of type 1 G protein-coupled receptors. The ACTH receptor, also known as the melanocortin 2 receptor (MC2R), is unusual in that it is absolutely dependent on a small accessory protein, melanocortin receptor accessory protein (MRAP) for cell surface expression and function. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and high degree of ligand specificity suggests that antagonism of this receptor could provide a useful therapeutic aid and a potential investigational tool. Clinical situations in which this could be useful include (1) Cushing's disease and ectopic ACTH syndrome - especially while preparing for definitive treatment of a causative tumor, or in refractory cases, or (2) congenital adrenal hyperplasia - as an adjunct to glucocorticoid replacement. A case for antagonism in other clinical situations in which there is ACTH excess can also be made. In this article, we will explore the scientific and clinical case for an ACTH antagonist, and will review the evidence for existing and recently described peptides and modified peptides in this role.

4.
Proc Natl Acad Sci U S A ; 109(42): 16986-91, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-23033494

ABSTRACT

Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases.


Subject(s)
Cyclobutanes/pharmacology , Indans/pharmacology , Inflammation/immunology , Macrophages/immunology , Morpholines/pharmacology , Phenylurea Compounds/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/pharmacology , Transcription Factors/metabolism , Analysis of Variance , Animals , Cell Line , Cyclobutanes/chemical synthesis , Cytokines/metabolism , DNA Primers/genetics , DNA, Complementary/genetics , Fluorescent Antibody Technique , Immunoblotting , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages/metabolism , Magnetic Resonance Spectroscopy , Mice , Mice, Knockout , Molecular Structure , Morpholines/chemical synthesis , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/chemistry , Phosphorylation , Polymerase Chain Reaction , Protein Serine-Threonine Kinases/genetics , Proteomics , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...