Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 4(2): 895-904, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20131855

ABSTRACT

We have studied the lifetime, activity, and evolution of Fe catalysts supported on different types of alumina: (a) sputter deposited alumina films (sputtered/Fe), (b) electron-beam deposited alumina films (e-beam/Fe), (c) annealed e-beam deposited alumina films (annealed e-beam/Fe), (d) alumina films deposited by atomic layer deposition (ALD/Fe), and (e) c-cut sapphire (sapphire/Fe). We show that the catalytic behavior, Ostwald ripening, and subsurface diffusion rates of Fe catalyst supported on alumina during water-assisted growth or "supergrowth" of single-walled carbon nanotube (SWNT) carpets are strongly influenced by the porosity of the alumina support. The catalytic activity increases in the following order: sapphire/Fe < annealed e-beam/Fe < ALD/Fe < e-beam/Fe < sputtered/Fe. With a combination of microscopic and spectroscopic characterization, we further show that the Ostwald ripening rates of the catalysts and the porosity of the alumina support correlate with the lifetime and activity of the catalysts. Specifically, our results reveal that SWNT carpet growth is maximized by very low Ostwald ripening rates, mild subsurface diffusion rates, and high porosity, which is best achieved in the sputtered/Fe catalyst. These results not only emphasize the connection between catalytic activity and particle stability during growth, but guide current efforts aimed at rational design of catalysts for enhanced and controlled SWNT carpet growth.

2.
Nano Lett ; 9(1): 44-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19046079

ABSTRACT

The Ostwald ripening behavior of Fe catalyst films deposited on thin alumina supporting layers is demonstrated as a function of thermal annealing in H2 and H2/H2O. The addition of H2O in super growth of single-walled carbon nanotube carpets is observed to inhibit Ostwald ripening due to the ability of oxygen and hydroxyl species to reduce diffusion rates of catalyst atoms. This work shows the impact of typical carpet growth environments on catalyst film evolution and the role Ostwald ripening may play in the termination of carpet growth.


Subject(s)
Crystallization/methods , Hydrogen/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Water/chemistry , Colloids/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
3.
Dalton Trans ; (22): 2937-44, 2008 Jun 14.
Article in English | MEDLINE | ID: mdl-18493629

ABSTRACT

The carboxylate residues of the open ends of aryl-tert-butyl and arylsulfonic acid side-walled functionalized single walled carbon nanotubes (SWNTs) have been investigated for the complexation conditions of the iron-molybdenum cluster [H(x)PMo(12)O(40)CH(4)Mo(72)Fe(30)(O(2)CMe)(15)O(254)(H(2)O)(98)] ("FeMoC"). A range of alternative donor groups for the attachment of FeMoC have been investigated for piranha etched SWNTs, dodecyl side-walled functionalized SWNTs (DD-SWNTs) and ultra-short SWNTs (US-SWNTs), including include pyridines, thiols and phosphines, using coupling reactions to either the carboxylate or hydroxide residues of the SWNTs' open ends. The functionalized SWNTs have been characterized by XPS, uptake of Fe(3+) and, where appropriate, MAS (31)P NMR. The efficacy of binding is dependent on the presence and identity of the ligand moiety. TEM and AFM of the SWNT-FeMoC conjugates show the presence of a 2-3 nm spherical feature on the tip of individual SWNTs.

SELECTION OF CITATIONS
SEARCH DETAIL