Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 33(14): 1195-1206, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38621658

ABSTRACT

Mutations in DNAJB6 are a well-established cause of limb girdle muscular dystrophy type D1 (LGMD D1). Patients with LGMD D1 develop progressive muscle weakness with histology showing fibre damage, autophagic vacuoles, and aggregates. Whilst there are many reports of LGMD D1 patients, the role of DNAJB6 in the muscle is still unclear. In this study, we developed a loss of function zebrafish model in order to investigate the role of Dnajb6. Using a double dnajb6a and dnajb6b mutant model, we show that loss of Dnajb6 leads to a late onset muscle weakness. Interestingly, we find that adult fish lacking Dnajb6 do not have autophagy or myofibril defects, however, they do show mitochondrial changes and damage. This study demonstrates that loss of Dnajb6 causes mitochondrial defects and suggests that this contributes to muscle weakness in LGMD D1. These findings expand our knowledge of the role of Dnajb6 in the muscle and provides a model to screen novel therapies for LGMD D1.


Subject(s)
Disease Models, Animal , HSP40 Heat-Shock Proteins , Mitochondria , Molecular Chaperones , Muscle Weakness , Muscular Dystrophies, Limb-Girdle , Zebrafish , Animals , Zebrafish/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Muscle Weakness/genetics , Muscle Weakness/pathology , Muscle Weakness/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Autophagy/genetics , Nerve Tissue Proteins
2.
Autophagy ; 17(9): 2494-2510, 2021 09.
Article in English | MEDLINE | ID: mdl-33030392

ABSTRACT

Dominant de novo mutations in the co-chaperone BAG3 cause a severe form of myofibrillar myopathy, exhibiting progressive muscle weakness, muscle structural failure, and protein aggregation. To elucidate the mechanism of disease in, and identify therapies for, BAG3 myofibrillar myopathy, we generated two zebrafish models, one conditionally expressing BAG3P209L and one with a nonsense mutation in bag3. While transgenic BAG3P209L-expressing fish display protein aggregation, modeling the early phase of the disease, bag3-/- fish exhibit exercise dependent fiber disintegration, and reduced swimming activity, consistent with later stages of the disease. Detailed characterization of the bag3-/- fish, revealed an impairment in macroautophagic/autophagic activity, a defect we confirmed in BAG3 patient samples. Taken together, our data highlights that while BAG3P209L expression is sufficient to promote protein aggregation, it is the loss of BAG3 due to its sequestration within aggregates, which results in impaired autophagic activity, and subsequent muscle weakness. We therefore screened autophagy-promoting compounds for their effectiveness at removing protein aggregates, identifying nine including metformin. Further evaluation demonstrated metformin is not only able to bring about the removal of protein aggregates in zebrafish and human myoblasts but is also able to rescue the fiber disintegration and swimming deficit observed in the bag3-/- fish. Therefore, repurposing metformin provides a promising therapy for BAG3 myopathy.Abbreviations:ACTN: actinin, alpha; BAG3: BAG cochaperone 3; CRYAB: crystallin alpha B; DES: desmin; DMSO: dimethyl sulfoxide; DNAJB6: DnaJ heat shock protein family (Hsp40) member B6; dpf: days post fertilization; eGFP: enhanced green fluorescent protein; FDA: Food and Drug Administration; FHL1: four and a half LIM domains 1; FLNC: filamin C; hpf: hours post-fertilization; HSPB8: heat shock protein family B [small] member 8; LDB3/ZASP: LIM domain binding 3; MYOT: myotilin; TTN: titin; WT: wild-type.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Metformin , Myopathies, Structural, Congenital , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Autophagy , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Metformin/pharmacology , Molecular Chaperones/metabolism , Muscle Proteins , Muscles/metabolism , Mutation , Myopathies, Structural, Congenital/genetics , Nerve Tissue Proteins/metabolism , Zebrafish/metabolism , Zebrafish Proteins
3.
Hum Mol Genet ; 28(9): 1403-1413, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30566586

ABSTRACT

Deficiency of muscle basement membrane (MBM) component laminin-α2 leads to muscular dystrophy congenital type 1A (MDC1A), a currently untreatable myopathy. Laminin--α2 has two main binding partners within the MBM, dystroglycan and integrin. Integrins coordinate both cell adhesion and signalling; however, there is little mechanistic insight into integrin's function at the MBM. In order to study integrin's role in basement membrane development and how this relates to the MBM's capacity to handle force, an itgß1.b-/- zebrafish line was created. Histological examination revealed increased extracellular matrix (ECM) deposition at the MBM in the itgß1.b-/- fish when compared with controls. Surprisingly, both laminin and collagen proteins were found to be increased in expression at the MBM of the itgß1.b-/- larvae when compared with controls. This increase in ECM components resulted in a decrease in myotomal elasticity as determined by novel passive force analyses. To determine if it was possible to control ECM deposition at the MBM by manipulating integrin activity, RGD peptide, a potent inhibitor of integrin-ß1, was injected into a zebrafish model of MDC1A. As postulated an increase in laminin and collagen was observed in the lama2-/- mutant MBM. Importantly, there was also an improvement in fibre stability at the MBM, judged by a reduction in fibre pathology. These results therefore show that blocking ITGß1 signalling increases ECM deposition at the MBM, a process that could be potentially exploited for treatment of MDC1A.


Subject(s)
Integrin beta1/metabolism , Laminin/deficiency , Oligopeptides/pharmacology , Animals , Basement Membrane/metabolism , Biomarkers , Collagen/metabolism , Disease Models, Animal , Disease Susceptibility , Genetic Loci , Immunohistochemistry , Integrin beta1/genetics , Mice, Knockout , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophies/etiology , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Phenotype , Protein Stability/drug effects
4.
Acta Neuropathol Commun ; 6(1): 40, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29848386

ABSTRACT

Nemaline myopathies are heterogeneous congenital muscle disorders causing skeletal muscle weakness and, in some cases, death soon after birth. Mutations in nebulin, encoding a large sarcomeric protein required for thin filament function, are responsible for approximately 50% of nemaline myopathy cases. Despite the severity of the disease there is no effective treatment for nemaline myopathy with limited research to develop potential therapies. Several supplements, including L-tyrosine, have been suggested to be beneficial and consequently self-administered by nemaline myopathy patients without any knowledge of their efficacy. We have characterized a zebrafish model for nemaline myopathy caused by a mutation in nebulin. These fish form electron-dense nemaline bodies and display reduced muscle function akin to the phenotypes observed in nemaline myopathy patients. We have utilized our zebrafish model to test and evaluate four treatments currently self-administered by nemaline myopathy patients to determine their ability to increase skeletal muscle function. Analysis of muscle pathology and locomotion following treatment with L-tyrosine, L-carnitine, taurine, or creatine revealed no significant improvement in skeletal muscle function emphasizing the urgency to develop effective therapies for nemaline myopathy.


Subject(s)
Muscle Proteins/metabolism , Muscle Proteins/therapeutic use , Muscle, Skeletal/pathology , Mutation/genetics , Myopathies, Nemaline/pathology , Myopathies, Nemaline/therapy , Actins/metabolism , Animals , Animals, Genetically Modified , Dose-Response Relationship, Drug , Embryo, Nonmammalian , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Microscopy, Electron , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Myopathies, Nemaline/genetics , RNA, Messenger/metabolism , Zebrafish
5.
PLoS Genet ; 14(2): e1007212, 2018 02.
Article in English | MEDLINE | ID: mdl-29420541

ABSTRACT

The lack of a mutant phenotype in homozygous mutant individuals' due to compensatory gene expression triggered upstream of protein function has been identified as genetic compensation. Whilst this intriguing process has been recognized in zebrafish, the presence of homozygous loss of function mutations in healthy human individuals suggests that compensation may not be restricted to this model. Loss of skeletal α-actin results in nemaline myopathy and we have previously shown that the pathological symptoms of the disease and reduction in muscle performance are recapitulated in a zebrafish antisense morpholino knockdown model. Here we reveal that a genetic actc1b mutant exhibits mild muscle defects and is unaffected by injection of the actc1b targeting morpholino. We further show that the milder phenotype results from a compensatory transcriptional upregulation of an actin paralogue providing a novel approach to be explored for the treatment of actin myopathy. Our findings provide further evidence that genetic compensation may influence the penetrance of disease-causing mutations.


Subject(s)
Actins/genetics , Dosage Compensation, Genetic/physiology , Muscle, Skeletal/pathology , Mutation , Myopathies, Nemaline/genetics , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Muscle, Skeletal/metabolism , Myopathies, Nemaline/pathology , Penetrance , Phenotype , Protein Isoforms/genetics , Zebrafish/embryology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...