Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Occup Environ Hyg ; 18(sup1): S1-S14, 2021.
Article in English | MEDLINE | ID: mdl-33822690

ABSTRACT

RESUMENEl nivel de protección ofrecido por las mascarillas con filtro de partículas y las mascarillas se establece considerando el porcentaje de partículas ambientales que penetran dentro del dispositivo de protección. Existen dos vías de penetración: (1) la infiltración a través del sellado facial de la mascarilla y (2) a través del medio filtrante. El objetivo principal de este estudio fue diferenciar el aporte proveniente de cada una de estas dos vías para partículas cuyo tamaño oscila entre 0.03-1 µm en condiciones de respiración reales. Así, mientras se realizaban pruebas de ajuste convencionales, se evaluaron una mascarilla respiratoria autofiltrante N95 y una mascarilla quirúrgica usada comúnmente en entornos de atención médica en 25 sujetos (número coincidente con el último panel de pruebas de ajuste del Instituto Nacional de Seguridad y Salud Laborales). Asimismo, ambas mascarillas fueron evaluadas empleando maniquíes de respiración que imitaban de forma precisa los patrones de respiración registrados previamente en los sujetos evaluados. Posteriormente, se compararon los datos de penetración obtenidos en las evaluaciones realizadas con sujetos humanos y con maniquíes para determinar los diferentes tamaños de partículas, así como los patrones de respiración. Así se determinaron 5,250 valores de penetración específicos correspondientes al ejercicio y el tamaño de las partículas. Para cada valor se calcularon la tasa de infiltración a través del sellado facial de la mascarilla y la tasa de infiltración a través del filtro, con la finalidad de cuantificar los aportes relativos realizados por cada vía de penetración. El número de partículas que penetra mediante infiltración del sellado facial de la mascarilla autofiltrante/mascarilla quirúrgica probadas excedió ampliamente el número de aquellas que lo hacen a través del filtro. Para la mascarilla autofiltrante N95, el exceso fue (en promedio) de un orden de magnitud y se incrementó notablemente al aumentar el tamaño de las partículas (p < 0.001): ∼7 veces mayor para 0,04 µm, ∼10 veces para 0.1 µm y ∼20 veces para 1 µm. En el caso de la mascarilla quirúrgica, la tasa de infiltración a través del sellado facial de la misma con respecto al filtro osciló entre 4.8 y 5.8 y no se vio significativamente afectada por el tamaño de las partículas para la fracción del submicrómetro evaluado. El movimiento facial/corporal tuvo un efecto pronunciado en el aporte relativo de las dos vías de penetración. La intensidad de la respiración y las dimensiones faciales mostraron alguna influencia (aunque limitada). Considerando que la mayoría de las partículas que penetraron ingresaron a través del sellado facial, al desarrollar la mascarilla autofiltrante/mascarilla quirúrgica la prioridad debería ser realizar una adecuación que permitiera eliminar o minimizar la infiltración a través del sellado facial y no mejorar la eficiencia del medio de filtro.

2.
J Occup Environ Hyg ; 18(sup1): S15-S24, 2021.
Article in English | MEDLINE | ID: mdl-33822694

ABSTRACT

ResumenLa frecuencia respiratoria (respiraciones/min) difiere entre los individuos y dependiendo de los niveles de actividad física. Las partículas ingresan a las mascarillas respiratorias mediante dos vías principales de penetración: infiltración a través del sellado facial y penetración a través de filtros. Sin embargo, se desconoce la forma en que la frecuencia respiratoria afecta el desempeño general de las mascarillas autofiltrantes N95 (filtering facepiece respirators, FFR) y las mascarillas quirúrgicas (MQ) contra partículas virales y otras partículas submicrómicas de importancia para la salud. En un maniquí de respiración a cuatro flujos inspiratorios medios (FIM) (15, 30, 55 y 85 L/min) y cinco frecuencias respiratorias (10, 15, 20, 25 y 30 respiraciones/min) se probaron una FFR y una MQ. En los dispositivos de protección respiratoria probados se determinaron la penetración a través del filtro (Pfiltro) y la infiltración total hacia el interior (ITI) de partículas de aerosol de cloruro de sodio (NaCl) en tamaños que oscilaban entre 20 y 500 nm. Asimismo, se calcularon las proporciones de penetración de la "infiltración a través del sellado facial con respecto al filtro" (ISFF). Tanto el FIM como la frecuencia respiratoria mostraron efectos significativos (p < 0.05) en el Pfiltro y la ITI. El aumento de la frecuencia respiratoria incrementó la ITI para las FFR N95 mientras que en las MQ no se observaron tendencias claras. El aumento del FIM incrementó la Pfiltro y disminuyó la ITI, lo que dio lugar a una disminución de la proporción de la ISFF. La mayoría de las proporciones de la ISFF fueron >1, lo que sugiere que la infiltración a través del sellado facial fue la vía primaria de penetración de partículas a diversas frecuencias respiratorias. La frecuencia respiratoria es otro factor (además del FIM) que puede afectar significativamente el desempeño de las FFR N95: las frecuencias respiratorias más altas aumentan la ITI. En el caso de las MQ probadas no se observó ninguna tendencia consistente de aumento o disminución de la ITI relacionada con el FIM o la frecuencia respiratoria. Para ampliar potencialmente estos hallazgos más allá del maniquí/sistema respiratorio utilizado, se necesitan estudios futuros orientados a comprender plenamente el mecanismo que hace que la frecuencia respiratoria afecte el desempeño de los dispositivos de protección respiratoria en los sujetos humanos.

3.
ERJ Open Res ; 5(3)2019 Jul.
Article in English | MEDLINE | ID: mdl-31423448

ABSTRACT

In a 7-year study at 4 microwave popcorn facilities, mixing room employees exposed to diacetyl prior to the introduction of respirators showed significant loss of lung function but did not continue to decline longitudinally faster than other job categories http://bit.ly/2xwWRiw.

6.
Environ Res ; 158: 470-479, 2017 10.
Article in English | MEDLINE | ID: mdl-28697481

ABSTRACT

OBJECTIVES: Vermiculite ore containing Libby amphibole asbestos (LAA) was mined in Libby, MT, from the 1920s-1990. Recreational and residential areas in Libby were contaminated with LAA. This objective of this study was to characterize childhood exposure to LAA and investigate its association with respiratory health during young adulthood. METHODS: Young adults who resided in Libby prior to age 18 completed a health and activity questionnaire, pulmonary function testing, chest x-ray and HRCT scan. LAA exposure was estimated based on participant report of engaging in activities with potential LAA exposure. Quantitative LAA estimates for activities were derived from sampling data and literature reports. RESULTS: A total of 312 participants (mean age 25.1 years) were enrolled and reported respiratory symptoms in the past 12 months including pleuritic chest pain (23%), regular cough (17%), shortness of breath (18%), and wheezing or whistling in the chest (18%). Cumulative LAA exposure was significantly associated with shortness of breath (aOR = 1.12, 95% CI 1.01-1.25 per doubling of exposure). Engaging in recreational activities near Rainy Creek Road (near the former mine site) and the number of instances heating vermiculite ore to make it expand or pop were also significantly associated with respiratory symptoms. LAA exposure was not associated with pulmonary function or pleural or interstitial changes on either chest x-ray or HRCT. CONCLUSIONS: Pleural or interstitial changes on x-ray or HRCT were not observed among this cohort of young adults. However, childhood exposure to LAA was significantly associated with respiratory symptoms during young adulthood. Pleuritic chest pain, in particular, has been identified as an early symptom associated with LAA exposure and therefore warrants continued follow-up given findings of progressive disease in other LAA exposed populations.


Subject(s)
Asbestos, Amphibole/toxicity , Environmental Exposure , Lung/physiopathology , Respiratory Tract Diseases/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Lung/pathology , Male , Mining , Montana/epidemiology , Respiratory Function Tests , Respiratory Tract Diseases/chemically induced , Young Adult
8.
J Occup Environ Hyg ; 13(3): 169-76, 2016.
Article in English | MEDLINE | ID: mdl-26554716

ABSTRACT

The objective of this study was to investigate the protection level offered by a Powered Air-Purifying Respirator (PAPR) equipped with an improperly sized or stretched-out loose-fitting facepiece using constant and cyclic flow conditions. Improperly sized PAPR facepieces of two models as well as a stretched-out facepiece were tested. These facepieces were examined in two versions: with and without exhaust holes. Loose-fitting facepieces (size "large") were donned on a small manikin headform and challenged with sodium chloride (NaCl) aerosol particles in an exposure chamber. Four cyclic flows with mean inspiratory flows (MIFs) of 30, 55, 85, and 135 L/min were applied using an electromechanical Breathing Recording and Simulation System (BRSS). The manikin Fit Factor (mFF) was determined as the ratio of aerosol concentrations outside (Cout) to inside (Cin) of the facepiece, measured with a P-Trak condensation particle counter (CPC). Results showed that the mFF decreased exponentially with increasing MIF. The mFF values of the stretched-out facepiece were significantly lower than those obtained for the undamaged ones. Facepiece type and MIF were found to significantly affect the performance of the loose-fitting PAPR. The effect of the exhaust holes was less pronounced and depended on the facepiece type. It was concluded that an improperly sized facepiece might potentially offer relatively low protection (mFF < 250) at high to strenuous workloads. The testing was also performed at a constant inhalation flow to explore the mechanism of the particle-facepiece interaction. Results obtained with cyclic flow pattern were consistent with the data generated when testing the loose-fitting PAPR under constant flow conditions. The time-weighted average values of mFF calculated from the measurements conducted under the constant flow regime were capable of predicting the protection under cyclic flow regime. The findings suggest that program administrators need to equip employees with properly sized facepieces and remove stretched-out ones from workplace. Manufacturers should emphasize the importance of proper sizing with their user instructions.


Subject(s)
Materials Testing , Respiratory Protective Devices , Aerosols/analysis , Air Pollutants, Occupational/analysis , Humans , Inhalation Exposure/analysis , Inhalation Exposure/prevention & control , Manikins , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Particle Size , Sodium Chloride/analysis
9.
Article in English | MEDLINE | ID: mdl-32336876

ABSTRACT

This article describes several aspects of oxygen (O2) deficiency with an emphasis on respirator programs and respirator selection. The Occupational Safety and Health Administration's (OSHA) 29 CFR 1910.134 and ANSI/ASSE Z88.2-2015 (Z88.2) have much in common. However, their exposure criteria and terminology used for describing levels of O2-deficiency and the approaches to assessing O2-deficiency differ. These differences can have a significant impact on an employer's respirator program and respirator selections for workplaces at altitudes above sea level. Under certain circumstances, Z88.2 leads to a more conservative respirator selection than OSHA because its O2-deficiency criteria and hazard assessment approach relies directly on partial pressure of oxygen (PO2) at all altitudes. Z88.2 defines an O2-deficient atmosphere as either immediately dangerous to life or health (IDLH), or non-IDLH based on the atmosphere's PO2 and defines respirator selection for these two O2-deficient atmospheres. Unlike Z88.2, OSHA does not directly access the biologically significant aspect of an atmosphere's PO2 in its hazard assessment. OSHA defines an O2-deficient atmosphere based upon a percentage of oxygen. OSHA does not use the term "O2-deficient IDLH"; however, OSHA considers any atmosphere with less than 19.5% O2 as IDLH and defines respirator selection for IDLH atmospheres. Although OSHA does not use the term "PO2" in their respirator standard, OSHA's exceptions to O2-deficient IDLH respirator selection policy are based on PO2 altitude-adjusted, O2 percentage criteria. This article provides descriptions of OSHA and Z88.2 requirements to evaluate workplace oxygen deficiency, their approaches to O2-deficiency hazard assessment, and describes their significance on respirator programs and selections. Alternative solutions to wearing respirators for protection against O2-deficiency resulting solely from high altitudes are also discussed. Selection and implementation of alternative solutions by the employer and their Physician or other Licensed Health Care Professional (PLHCP) are not covered by either respirator standard. Appendix A provides information about the physiological effect of wearing respirators and the mechanics of respiration, which is an important consideration in lower O2 atmospheres.

11.
J Occup Environ Med ; 57(1): 6-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25563535

ABSTRACT

OBJECTIVE: Evaluate the relationship between cumulative fiber exposure and high-resolution or conventional chest computed tomography (HRCT/CT) changes and spirometry of workers with Libby amphibole asbestos exposure. METHODS: Of the original 1980 cohort (n = 513), 431 were living and asked to participate. Images were evaluated for localized pleural thickening (LPT), diffuse pleural thickening (DPT), and parenchymal changes. RESULTS: A total of 306 participants provided either HRCT/CT scans (n = 191) or chest radiographs (n = 115). Of the 191 with HRCT/CT, 52.9% had pleural changes and 13.1% had parenchymal changes. Those with LPT only, LPT and/or DPT, or DPT and/or parenchymal changes had mean 6.1, 8.0, and 18.0 loss in percent predicted forced vital capacity, respectively. CONCLUSIONS: Exposure to vermiculite containing amphibole fibers is associated with pleural and parenchymal HRCT/CT changes at low cumulative fiber exposure; these changes are associated with spirometric decrements.


Subject(s)
Air Pollutants, Occupational/toxicity , Asbestos, Amphibole/toxicity , Lung/diagnostic imaging , Mining , Occupational Exposure/adverse effects , Pleura/diagnostic imaging , Aged , Female , Humans , Lung/physiopathology , Male , Middle Aged , Montana , Occupational Exposure/analysis , Spirometry , Tomography, X-Ray Computed , Vital Capacity
12.
J Occup Environ Hyg ; 11(3): 178-85, 2014.
Article in English | MEDLINE | ID: mdl-24521067

ABSTRACT

Breathing frequency (breaths/min) differs among individuals and levels of physical activity. Particles enter respirators through two principle penetration pathways: faceseal leakage and filter penetration. However, it is unknown how breathing frequency affects the overall performance of N95 filtering facepiece respirators (FFRs) and surgical masks (SMs) against viral particles, as well as other health-relevant submicrometer particles. A FFR and SM were tested on a breathing manikin at four mean inspiratory flows (MIFs) (15, 30, 55, and 85 L/min) and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). Filter penetration (Pfilter) and total inward leakage (TIL) were determined for the tested respiratory protection devices against sodium chloride (NaCl) aerosol particles in the size range of 20 to 500 nm. "Faceseal leakage-to-filter" (FLTF) penetration ratios were calculated. Both MIF and breathing frequency showed significant effects (p < 0.05) on Pfilter and TIL. Increasing breathing frequency increased TIL for the N95 FFR whereas no clear trends were observed for the SM. Increasing MIF increased Pfilter and decreased TIL resulting in decreasing FLTF ratio. Most of FLTF ratios were >1, suggesting that the faceseal leakage was the primary particle penetration pathway at various breathing frequencies. Breathing frequency is another factor (besides MIF) that can significantly affect the performance of N95 FFRs, with higher breathing frequencies increasing TIL. No consistent trend of increase or decrease of TIL with either MIF or breathing frequency was observed for the tested SM. To potentially extend these findings beyond the manikin/breathing system used, future studies are needed to fully understand the mechanism causing the breathing frequency effect on the performance of respiratory protection devices on human subjects.


Subject(s)
Masks , Respiration , Respiratory Protective Devices , Virion , Equipment Safety , Occupational Exposure/prevention & control
13.
Ann Occup Hyg ; 58(2): 182-94, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24106004

ABSTRACT

OBJECTIVES: The objective of this study was to investigate the effects of breathing frequency and flow rate on the total inward leakage (TIL) of an elastomeric half-mask donned on an advanced manikin headform and challenged with combustion aerosols. METHODS: An elastomeric half-mask respirator equipped with P100 filters was donned on an advanced manikin headform covered with life-like soft skin and challenged with aerosols originated by burning three materials: wood, paper, and plastic (polyethylene). TIL was determined as the ratio of aerosol concentrations inside (C in) and outside (C out) of the respirator (C in/C out) measured with a nanoparticle spectrometer operating in the particle size range of 20-200nm. The testing was performed under three cyclic breathing flows [mean inspiratory flow (MIF) of 30, 55, and 85 l/min] and five breathing frequencies (10, 15, 20, 25, and 30 breaths/min). A completely randomized factorial study design was chosen with four replicates for each combination of breathing flow rate and frequency. RESULTS: Particle size, MIF, and combustion material had significant (P < 0.001) effects on TIL regardless of breathing frequency. Increasing breathing flow decreased TIL. Testing with plastic aerosol produced higher mean TIL values than wood and paper aerosols. The effect of the breathing frequency was complex. When analyzed using all combustion aerosols and MIFs (pooled data), breathing frequency did not significantly (P = 0.08) affect TIL. However, once the data were stratified according to combustion aerosol and MIF, the effect of breathing frequency became significant (P < 0.05) for all MIFs challenged with wood and paper combustion aerosols, and for MIF = 30 l/min only when challenged with plastic combustion aerosol. CONCLUSIONS: The effect of breathing frequency on TIL is less significant than the effects of combustion aerosol and breathing flow rate for the tested elastomeric half-mask respirator. The greatest TIL occurred when challenged with plastic aerosol at 30 l/min and at a breathing frequency of 30 breaths/min.


Subject(s)
Air Pollutants, Occupational/analysis , Equipment Failure , Particulate Matter/analysis , Respiratory Protective Devices , Respiratory Rate , Smoke/analysis , Aerosols/analysis , Elastomers , Environmental Monitoring/methods , Humans , Inhalation Exposure/analysis , Inhalation Exposure/prevention & control , Manikins , Masks , Occupational Exposure/prevention & control , Particle Size
14.
Ann Occup Hyg ; 57(7): 884-97, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23609115

ABSTRACT

OBJECTIVES: This study quantified the particle size effect on the performance of elastomeric half-mask respirators, which are widely used by firefighters and first responders exposed to combustion aerosols. METHODS: One type of elastomeric half-mask respirator equipped with two P-100 filters was donned on a breathing manikin while challenged with three combustion aerosols (originated by burning wood, paper, and plastic). Testing was conducted with respirators that were fully sealed, partially sealed (nose area only), or unsealed to the face of a breathing manikin to simulate different faceseal leakages. Three cyclic flows with mean inspiratory flow (MIF) rates of 30, 85, and 135 L/min were tested for each combination of sealing condition and combustion material. Additional testing was performed with plastic combustion particles at other cyclic and constant flows. Particle penetration was determined by measuring particle number concentrations inside and outside the respirator with size ranges from 20 to 200 nm. RESULTS: Breathing flow rate, particle size, and combustion material all had significant effects on the performance of the respirator. For the partially sealed and unsealed respirators, the penetration through the faceseal leakage reached maximum at particle sizes >100 nm when challenged with plastic aerosol, whereas no clear peaks were observed for wood and paper aerosols. The particles aerosolized by burning plastic penetrated more readily into the unsealed half-mask than those aerosolized by the combustion of wood and paper. The difference may be attributed to the fact that plastic combustion particles differ from wood and paper particles by physical characteristics such as charge, shape, and density. For the partially sealed respirator, the highest penetration values were obtained at MIF = 85 L/min. The unsealed respirator had approximately 10-fold greater penetration than the one partially sealed around the bridge of the nose, which indicates that the nose area was the primary leak site.


Subject(s)
Air Pollutants, Occupational/analysis , Particle Size , Particulate Matter/analysis , Respiratory Protective Devices/standards , Smoke/analysis , Aerosols/analysis , Humans , Inhalation Exposure/analysis , Inhalation Exposure/prevention & control , Manikins , Materials Testing , Occupational Exposure/prevention & control
15.
J Occup Environ Hyg ; 10(4): 203-12, 2013.
Article in English | MEDLINE | ID: mdl-23442086

ABSTRACT

This study investigated the effects of faceseal leakage, breathing flow, and combustion material on the overall (non-size-selective) penetration of combustion particles into P-100 half and full facepiece elastomeric respirators used by firefighters. Respirators were tested on a breathing manikin exposed to aerosols produced by combustion of three materials (wood, paper, and plastic) in a room-size exposure chamber. Testing was performed using a single constant flow (inspiratory flow rate = 30 L/min) and three cyclic flows (mean inspiratory flow rates = 30, 85, and 135 L/min). Four sealing conditions (unsealed, nose-only sealed, nose and chin sealed, and fully sealed) were examined to evaluate the respirator faceseal leakage. Total aerosol concentration was measured inside (C(in)) and outside (C(out)) the respirator using a condensation particle counter. The total penetration through the respirator was determined as a ratio of the two (P = C(in) / C(out)). Faceseal leakage, breathing flow type and rate, and combustion material were all significant factors affecting the performance of the half mask and full facepiece respirators. The efficiency of P-100 respirator filters met the NIOSH certification criteria (penetration ≤0.03%); it was not significantly influenced by the challenge aerosol and flow type, which supports the current NIOSH testing procedure using a single challenge aerosol and a constant airflow. However, contrary to the NIOSH total inward leakage (TIL) test protocol assuming that the result is independent on the type of the tested aerosol, this study revealed that the challenge aerosol significantly affects the particle penetration through unsealed and partially sealed half mask respirators. Increasing leak size increased total particle penetration. The findings point to some limitations of the existing TIL test in predicting protection levels offered by half mask elastomeric respirators.


Subject(s)
Particulate Matter/analysis , Respiratory Protective Devices , Environmental Monitoring/methods , Firefighters , Fires , Manikins , National Institute for Occupational Safety and Health, U.S. , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Particle Size , United States
17.
J Occup Environ Hyg ; 10(3): 109-15, 2013.
Article in English | MEDLINE | ID: mdl-23339437

ABSTRACT

This study investigated differences in penetration between fibers and spherical particles through faceseal leakage of an N95 filtering facepiece respirator. Three cyclic breathing flows were generated corresponding to mean inspiratory flow rates (MIF) of 15, 30, and 85 L/min. Fibers had a mean diameter of 1 µm and a median length of 4.9 µm (calculated aerodynamic diameter, d(ae) = 1.73 µm). Monodisperse polystyrene spheres with a mean physical diameter of 1.01 µm (PSI) and 1.54 µm (PSII) were used for comparison (calculated d(ae) = 1.05 and 1.58 µm, respectively). Two optical particle counters simultaneously determined concentrations inside and outside the respirator. Geometric means (GMs) for filter penetration of the fibers were 0.06, 0.09, and 0.08% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.07, 0.12, and 0.12%. GMs for faceseal penetration of fibers were 0.40, 0.14, and 0.09% at MIF of 15, 30, and 85 L/min, respectively. Corresponding values for PSI were 0.96, 0.41, and 0.17%. Faceseal penetration decreased with increased breathing rate for both types of particles (p ≤ 0.001). GMs of filter and faceseal penetration of PSII at an MIF of 30 L/min were 0.14% and 0.36%, respectively. Filter penetration and faceseal penetration of fibers were significantly lower than those of PSI (p < 0.001) and PSII (p < 0.003). This confirmed that higher penetration of PSI was not due to slightly smaller aerodynamic diameter, indicating that the shape of fibers rather than their calculated mean aerodynamic diameter is a prevailing factor on deposition mechanisms through the tested respirator. In conclusion, faceseal penetration of fibers and spherical particles decreased with increasing breathing rate, which can be explained by increased capture by impaction. Spherical particles had 2.0-2.8 times higher penetration through faceseal leaks and 1.1-1.5 higher penetration through filter media than fibers, which can be attributed to differences in interception losses.


Subject(s)
Filtration/standards , Glass , Inhalation Exposure/prevention & control , Particulate Matter , Respiratory Protective Devices/standards , Aerosols , Air Pollutants, Occupational , Humans , Manikins , Materials Testing , Particle Size , Respiratory Rate
18.
Aerosol Sci Technol ; 47(11): 1180-1187, 2013.
Article in English | MEDLINE | ID: mdl-31548759

ABSTRACT

The effect of aerosol particle size on the performance of an N95 filtering facepiece respirator (FFR) and a surgical mask (SM) was evaluated under different breathing conditions, including breathing frequency and mean inspiratory flow (MIF) rate. The FFR and SM were sealed on a manikin headform and challenged with charge-equilibrated NaCl aerosol. Filter penetration (Pfilter) was determined as the ratio of aerosol concentrations inside and outside the FFR/SM size-selectively (28 channels) within a range of 20 to 500 nm. In addition, the same models of the FFR and SM were donned, but not sealed, on an advanced manikin headform covered with skin-like material. Total inward leakage (TIL), which represents the total particle penetration, was measured under conditions identical to the filter penetration experiment. Testing was conducted at four mean MIFs (15, 30, 55 and 85 L/min) combined with five breathing frequencies (10, 15, 20, 25 and 30 breaths/min). The results show that SM produced much higher Pfilter and TIL values, and thus provide little protection against aerosols in the size range tested. Pfilter was significantly affected by particle size and breathing flow rate (p <0.05) for the tested FFR and SM. Surprisingly, for both devices, Pfilter as a function of the particle size exhibited more than one peak under all tested breathing conditions. The effect of breathing frequency on Pfilter was generally less pronounced, especially for lower MIFs. For the FFR and SM, TIL increased with increasing particle size up to about 50 nm; for particles above 50 nm, the total penetration was not significantly affected by particle size and breathing frequency; however, the effect of MIF remained significant.

19.
Pediatr Allergy Immunol ; 23(5): 479-87, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22435840

ABSTRACT

BACKGROUND: Contradictory findings on the differential effects of second-hand smoke (SHS) on lung function in girls and boys may result from masked relationships between host and environmental factors. Allergic sensitization may augment the relationship between SHS and decreased lung function, although its role in relation to the inconsistent gender differences in children has not been elucidated. HYPOTHESIS: We hypothesize that there will be differences between boys and girls related to early-life allergic sensitization and exposure to SHS on pulmonary function later in childhood. METHODS: Participants in this study (n = 486) were drawn from the Cincinnati Childhood Allergy and Air Pollution (CCAAPS) birth cohort study consisting of 46% girls. Allergic sensitization was assessed by skin prick test (SPT) to 15 aeroallergens at ages 2, 4, and 7, while pulmonary function and asthma diagnosis occurred at age 7. SHS exposure was measured by hair cotinine at ages 2 and/or 4. Gender differences of SHS exposure on pulmonary function among children with positive SPTs at ages 2, 4, and 7 as well as first- and higher-order interactions were examined by multiple linear regression. Interactions significant in the multivariate models were also examined via stratification. Comparisons within and between stratified groups were assessed by examining the slope of the parameter estimates/beta coefficients and associated p-values and confidence intervals. RESULTS: Increased cotinine levels were significantly associated with decreases in FEV(1) (-0.03 l, p < 0.05), peak expiratory flow (-0.07 l/s, p < 0.05), and FEF (25-75%) (-0.06 l/s, p < 0.01). The interaction between cotinine and sensitization at age 2 was borderline significant (p = 0.10) in the FEF(25-75%) model and showed an exposure response effect according to the number of positive SPTs at age 2; zero (-0.06 l/s, p < 0.01), one (-0.09 l/s, p < 0.05), or two or more positive SPTs (-0.30 l/s, p < 0.01). Despite increased polysensitization among boys, the association between cotinine and FEF(25-75%) among girls, with two or more positive SPTs at age 2, showed the greatest deficits in FEF(25-75%) (-0.34 l/s vs. -0.05 l/s and -0.06 l/s for non-sensitized girls and boys, respectively. Girls with two or more positive SPTs showed a twofold greater decrease in FEF(25-5%) (-0.34 l/s; 95% CI: -0.55, -0.13) compared to boys with the same degree of allergic sensitization (-0.18 l/s; 95% CI: -0.41, 0.06), although this difference was not statistically significant. CONCLUSIONS: Reductions in lung function were observed among children exposed to SHS, and the number of aeroallergen-positive SPTs at age 2 modifies this relationship. Girls experiencing early childhood allergic sensitization and high SHS exposure are at greater risk of decreased lung function later in childhood compared to non-sensitized girls and boys and demonstrate greater deficits compared to boys with similar degrees of sensitization.


Subject(s)
Allergens/immunology , Asthma/physiopathology , Hypersensitivity/physiopathology , Lung/physiopathology , Tobacco Smoke Pollution/adverse effects , Allergens/adverse effects , Child , Child, Preschool , Cohort Studies , Cotinine/urine , Female , Follow-Up Studies , Humans , Hypersensitivity/immunology , Immunization , Lung/immunology , Male , Sex Factors , Spirometry , United States
20.
J Occup Environ Hyg ; 8(7): 417-25, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21732855

ABSTRACT

This study compared workplace protection factors (WPFs) for five different contaminants (endotoxin, fungal spores, (1→3)-ß-D-glucan, total particle mass, and total particle number) provided by an N95 elastomeric respirator (ER) and an N95 filtering facepiece respirator (FFR). We previously reported size-selective WPFs for total particle numbers for the ER and FFR, whereas the current article is focused on WPFs for bioaerosols and total particle mass. Farm workers (n = 25) wore the ER and FFR while performing activities at eight locations representing horse farms, pig barns, and grain handling facilities. For the determination of WPFs, particles were collected on filters simultaneously inside and outside the respirator during the first and last 15 min of a 60-min experiment. One field blank per subject was collected without actual sampling. A reporting limit (RL) was established for each contaminant based on geometric means (GMs) of the field blanks as the lowest possible measurable values. Depending on the contaminant type, 38-48% of data points were below the RL. Therefore, a censored regression model was used to estimate WPFs (WPF(censored)). The WPF(censored) provided by the two types of respirators were not significantly different. In contrast, significant differences were found in the WPF(censored) for different types of contaminants. GMs WPFs(censored) for the two types of respirators combined were 154, 29, 18, 19, and 176 for endotoxin, fungal spore count, (1→3)-ß-D-glucan, total particle mass, and total particle number, respectively. The WPF(censored) was more strongly associated with concentrations measured outside the respirator for endotoxin, fungal spores, and total particle mass except for total particle number. However, when only data points with outside concentrations higher than 176×RL were included, the WPFs increased, and the association between the outside concentrations and the WPFs became weaker. Results indicate that difference in WPFs observed between different contaminants may be attributed to differences in the sensitivity of analytical methods to detect low inside concentrations, rather than the nature of particles (biological or non-biological).


Subject(s)
Air Pollutants, Occupational/analysis , Endotoxins/analysis , Occupational Exposure/prevention & control , Respiratory Protective Devices , Spores, Fungal/isolation & purification , beta-Glucans/analysis , Air Pollutants, Occupational/toxicity , Endotoxins/toxicity , Filtration , Inhalation Exposure/prevention & control , Occupational Exposure/analysis , Particle Size , Proteoglycans , beta-Glucans/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...