Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 536, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087090

ABSTRACT

CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.


Subject(s)
Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Phosphofructokinase-2/metabolism , Animals , Autophagy , Child, Preschool , Disease Models, Animal , Female , Humans , Lysosomal Storage Diseases/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Male , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Neuronal Ceroid-Lipofuscinoses/genetics , Neurons/metabolism , Phosphofructokinase-2/genetics , Up-Regulation
2.
Stem Cell Reports ; 17(1): 143-158, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34942088

ABSTRACT

The genetic modification of stem cells (SCs) is typically achieved using integrating vectors, whose potential integrative genotoxicity and propensity for epigenetic silencing during differentiation limit their application. The genetic modification of cells should provide sustainable levels of transgene expression, without compromising the viability of a cell or its progeny. We developed nonviral, nonintegrating, and autonomously replicating minimally sized DNA nanovectors to persistently genetically modify SCs and their differentiated progeny without causing any molecular or genetic damage. These DNA vectors are capable of efficiently modifying murine and human pluripotent SCs with minimal impact and without differentiation-mediated transgene silencing or vector loss. We demonstrate that these vectors remain episomal and provide robust and sustained transgene expression during self-renewal and targeted differentiation of SCs both in vitro and in vivo through embryogenesis and differentiation into adult tissues, without damaging their phenotypic characteristics.


Subject(s)
Cell Differentiation , Gene Expression , Genetic Vectors/genetics , Plasmids/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts , Gene Expression Profiling , Humans , Mice , Transgenes
3.
Mol Ther Methods Clin Dev ; 23: 348-358, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34729381

ABSTRACT

The application of induced pluripotent stem cells (iPSCs) in advanced therapies is increasing at pace, but concerns remain over their clinical safety profile. We report the first-ever application of doggybone DNA (dbDNA) vectors to generate human iPSCs. dbDNA vectors are closed-capped linear double-stranded DNA gene expression cassettes that contain no bacterial DNA and are amplified by a chemically defined, current good manufacturing practice (cGMP)-compliant methodology. We achieved comparable iPSC reprogramming efficiencies using transiently expressing dbDNA vectors with the same iPSC reprogramming coding sequences as the state-of-the-art OriP/EBNA1 episomal vectors but, crucially, in the absence of p53 shRNA repression. Moreover, persistent expression of EBNA1 from bacterially derived episomes resulted in stimulation of the interferon response, elevated DNA damage, and increased spontaneous differentiation. These cellular activities were diminished or absent in dbDNA-iPSCs, resulting in lines with a greater stability and safety potential for cell therapy.

4.
iScience ; 23(12): 101808, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33305175

ABSTRACT

Explosion of gene therapy approaches for treating rare monogenic and common liver disorders created an urgent need for disease models able to replicate human liver cellular environment. Available models lack 3D liver structure or are unable to survive in long-term culture. We aimed to generate and test a 3D culture system that allows long-term maintenance of human liver cell characteristics. The in vitro whole-organ "Bioreactor grown Artificial Liver Model" (BALM) employs a custom-designed bioreactor for long-term 3D culture of human induced pluripotent stem cells-derived hepatocyte-like cells (hiHEPs) in a mouse decellularized liver scaffold. Adeno-associated viral (AAV) and lentiviral (LV) vectors were introduced by intravascular injection. Substantial AAV and LV transgene expression in the BALM-grown hiHEPs was detected. Measurement of secreted proteins in the media allowed non-invasive monitoring of the system. We demonstrated that humanized whole-organ BALM is a valuable tool to generate pre-clinical data for investigational medicinal products.

5.
Stem Cells ; 38(10): 1292-1306, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32621788

ABSTRACT

Inhibition of E-cad in mouse embryonic stem cells (mESCs) leads to a switch from LIF-BMP to Activin/Nodal-dependent pluripotency, consistent with transition from a naïve to primed pluripotent phenotype. We have used both genetic ablation and steric inhibition of E-cad function in mESCs to assess alterations to phenotype using quantitative mass spectrometry analysis, network models, and functional assays. Proteomic analyses revealed that one third of detected proteins were altered in E-cad null mESCs (Ecad-/- mESCs) compared to wild type (624 proteins were downregulated and 705 were proteins upregulated). Network pathway analysis and subsequent cellular flux assays confirmed a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, specifically through mitochondrial complex III downregulation and hypoxia inducible factor 1a target upregulation. Central to this was the transcriptional coactivator EP300. E-cad is a well-known tumor suppressor, its downregulation during cancer initiation and metastasis can be linked to the metabolic switch known as Warburg effect. This study highlights a phenomena found in both primed pluripotent state and cancer stemness and links it to loss of E-cad. Data are available via ProteomeXchange with identifier PXD012679.


Subject(s)
Cadherins/metabolism , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Cycle/genetics , Cells, Cultured , E1A-Associated p300 Protein/metabolism , Electron Transport Complex III/metabolism , Energy Metabolism , Fatty Acids/metabolism , Gene Expression Regulation , Glycolysis , Mice , Mice, Knockout , Neoplastic Stem Cells/metabolism , Proteome/metabolism , Proteomics , Reactive Oxygen Species/metabolism
6.
Sci Rep ; 10(1): 2121, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034258

ABSTRACT

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Mice, Transgenic/genetics , Animals , Biosensing Techniques/methods , Gene Expression/genetics , Green Fluorescent Proteins/genetics , Inflammation/genetics , Luciferases, Firefly/genetics , Mice , NF-kappa B/genetics , Promoter Regions, Genetic/genetics , Signal Transduction/genetics , Spleen Focus-Forming Viruses/genetics , Transcription, Genetic/genetics
7.
Methods Mol Biol ; 2081: 161-175, 2020.
Article in English | MEDLINE | ID: mdl-31721124

ABSTRACT

In vivo bioluminescent imaging allows the detection of reporter gene expression in rodents in real time. Here we describe a novel technology whereby we can generate somatotransgenic rodents with the use of a viral vector carrying a luciferase transgene. We are able to achieve long term luciferase expression by a single injection of lentiviral or adeno-associated virus vectors to newborn mice. Further, we describe whole body bioluminescence imaging of conscious mice in a noninvasive manner, thus enforcing the 3R's (replacement, reduction, and refinement) of biomedical animal research.


Subject(s)
Gene Expression , Genes, Reporter , Luminescent Measurements/methods , Animals , Biosensing Techniques , Gene Order , Genetic Vectors/genetics , Luciferases, Firefly/genetics , Mice , Plasmids/genetics , Transfection , Transgenes
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(9): 165559, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31655107

ABSTRACT

The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future.


Subject(s)
Models, Biological , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology , Animals , Disease Models, Animal , Humans , Lysosomes/metabolism , Lysosomes/pathology , Neuronal Ceroid-Lipofuscinoses/genetics
9.
J Med Chem ; 62(3): 1291-1305, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30640473

ABSTRACT

The Hippo pathway is an important regulator of cell growth, proliferation, and migration. TEAD transcription factors, which lie at the core of the Hippo pathway, are essential for regulation of organ growth and wound repair. Dysregulation of TEAD and its regulatory cofactor Yes-associated protein (YAP) have been implicated in numerous human cancers and hyperproliferative pathological processes. Hence, the YAP-TEAD complex is a promising therapeutic target. Here, we use in silico molecular docking using Bristol University Docking Engine to screen a library of more than 8 million druglike molecules for novel disrupters of the YAP-TEAD interaction. We report the identification of a novel compound (CPD3.1) with the ability to disrupt YAP-TEAD protein-protein interaction and inhibit TEAD activity, cell proliferation, and cell migration. The YAP-TEAD complex is a viable drug target, and CPD3.1 is a lead compound for the development of more potent TEAD inhibitors for treating cancer and other hyperproliferative pathologies.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Cell Movement/drug effects , Cell Proliferation/drug effects , Molecular Docking Simulation , Transcription Factors/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Computer Simulation , Gene Expression/drug effects , Humans , Transcription Factors/metabolism , YAP-Signaling Proteins
10.
Lancet Neurol ; 18(1): 107-116, 2019 01.
Article in English | MEDLINE | ID: mdl-30470609

ABSTRACT

Treatment of the neuronal ceroid lipofuscinoses, also known as Batten disease, is at the start of a new era because of diagnostic and therapeutic advances relevant to this group of inherited neurodegenerative and life-limiting disorders that affect children. Diagnosis has improved with the use of comprehensive DNA-based tests that simultaneously screen for many genes. The identification of disease-causing mutations in 13 genes provides a basis for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, and for the development of targeted therapies. These targeted therapies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. Such therapeutic developments have the potential to enable earlier diagnosis and better targeted therapeutic management. The first approved treatment is an intracerebroventricularly administered enzyme for neuronal ceroid lipofuscinosis type 2 disease that delays symptom progression. Efforts are underway to make similar progress for other forms of the disorder.


Subject(s)
Enzyme Replacement Therapy , Genetic Therapy/methods , Neuronal Ceroid-Lipofuscinoses/therapy , Disease Progression , Humans , Mutation , Neuronal Ceroid-Lipofuscinoses/drug therapy , Neuronal Ceroid-Lipofuscinoses/genetics
11.
Stem Cells Cloning ; 11: 85-93, 2018.
Article in English | MEDLINE | ID: mdl-30519053

ABSTRACT

BACKGROUND: Although considerable research on neuromuscular junctions (NMJs) has been conducted, the prospect of in vivo NMJ studies is limited and these studies are challenging to implement. Therefore, there is a clear unmet need to develop a feasible, robust, and physiologically relevant in vitro NMJ model. OBJECTIVE: We aimed to establish a novel functional human NMJs platform, which is serum and neural complex media/neural growth factor-free, using human immortalized myoblasts and human embryonic stem cells (hESCs)-derived neural progenitor cells (NPCs) that can be used to understand the mechanisms of NMJ development and degeneration. METHODS: Immortalized human myoblasts were co-cultured with hESCs derived committed NPCs. Over the course of the 7 days myoblasts differentiated into myotubes and NPCs differentiated into motor neurons. RESULTS: Neuronal axon sprouting branched to form multiple NMJ innervation sites along the myotubes and the myotubes showed extensive, spontaneous contractile activity. Choline acetyltransferase and ßIII-tubulin immunostaining confirmed that the NPCs had matured into cholinergic motor neurons. Postsynaptic site of NMJs was further characterized by staining dihydropyridine receptors, ryanodine receptors, and acetylcholine receptors by α-bungarotoxin. CONCLUSION: We established a functional human motor unit platform for in vitro investigations. Thus, this co-culture system can be used as a novel platform for 1) drug discovery in the treatment of neuromuscular disorders, 2) deciphering vital features of NMJ formation, regulation, maintenance, and repair, and 3) exploring neuromuscular diseases, age-associated degeneration of the NMJ, muscle aging, and diabetic neuropathy and myopathy.

12.
EMBO Mol Med ; 10(8)2018 08.
Article in English | MEDLINE | ID: mdl-29930174

ABSTRACT

The adaptive cellular response to low oxygen tensions is mediated by the hypoxia-inducible factors (HIFs), a family of heterodimeric transcription factors composed of HIF-α and HIF-ß subunits. Prolonged HIF expression is a key contributor to cellular transformation, tumorigenesis and metastasis. As such, HIF degradation under hypoxic conditions is an essential homeostatic and tumour-suppressive mechanism. LIMD1 complexes with PHD2 and VHL in physiological oxygen levels (normoxia) to facilitate proteasomal degradation of the HIF-α subunit. Here, we identify LIMD1 as a HIF-1 target gene, which mediates a previously uncharacterised, negative regulatory feedback mechanism for hypoxic HIF-α degradation by modulating PHD2-LIMD1-VHL complex formation. Hypoxic induction of LIMD1 expression results in increased HIF-α protein degradation, inhibiting HIF-1 target gene expression, tumour growth and vascularisation. Furthermore, we report that copy number variation at the LIMD1 locus occurs in 47.1% of lung adenocarcinoma patients, correlates with enhanced expression of a HIF target gene signature and is a negative prognostic indicator. Taken together, our data open a new field of research into the aetiology, diagnosis and prognosis of LIMD1-negative lung cancers.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Lung Neoplasms/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Hypoxia/genetics , Cell Hypoxia/physiology , Cell Line, Tumor , Feedback, Physiological , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Mice , Middle Aged , Prognosis , Survival Analysis , Vascular Endothelial Growth Factor A/genetics
13.
Stem Cell Reports ; 10(6): 1766-1781, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29681545

ABSTRACT

Human neural development begins at embryonic day 19 and marks the beginning of organogenesis. Neural stem cells in the neural tube undergo profound functional, morphological, and metabolic changes during neural specification, coordinated by a combination of exogenous and endogenous cues. The temporal cell signaling activities that mediate this process, during development and in the postnatal brain, are incompletely understood. We have applied gene expression studies and transcription factor-activated reporter lentiviruses during in vitro neural specification of human pluripotent stem cells. We show that nuclear factor κB orchestrates a multi-faceted metabolic program necessary for the maturation of neural progenitor cells during neurogenesis.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Energy Metabolism , NF-kappa B/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Autophagy , Biomarkers , Cell Cycle , Cell Differentiation/genetics , Cells, Cultured , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , Humans , Immunohistochemistry , Models, Biological , Neurogenesis/genetics , Phenotype , Signal Transduction
14.
Stem Cell Res ; 25: 233-244, 2017 12.
Article in English | MEDLINE | ID: mdl-29172153

ABSTRACT

The class Ia anti-arrhythmic drug ajmaline is used clinically to unmask latent type I ECG in Brugada syndrome (BrS) patients, although its mode of action is poorly characterised. Our aims were to identify ajmaline's mode of action in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs), and establish a simple BrS hiPSC platform to test whether differences in ajmaline response could be determined between BrS patients and controls. Control hiPSCs were differentiated into spontaneously contracting cardiac clusters. It was found using multi electrode array (MEA) that ajmaline treatment significantly lengthened cluster activation-recovery interval. Patch clamping of single CMs isolated from clusters revealed that ajmaline can block both INa and IKr. Following generation of hiPSC lines from BrS patients (absent of pathogenic SCN5A sodium channel mutations), analysis of hiPSC-CMs from patients and controls revealed that differentiation and action potential parameters were similar. Comparison of cardiac clusters by MEA showed that ajmaline lengthened activation-recovery interval consistently across all lines. We conclude that ajmaline can block both depolarisation and repolarisation of hiPSC-CMs at the cellular level, but that a more refined integrated tissue model may be necessary to elicit differences in its effect between BrS patients and controls.


Subject(s)
Ajmaline/administration & dosage , Anti-Arrhythmia Agents/administration & dosage , Brugada Syndrome/drug therapy , Heart/drug effects , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/drug effects , Adult , Brugada Syndrome/genetics , Brugada Syndrome/metabolism , Brugada Syndrome/physiopathology , Cell Differentiation/drug effects , Heart/physiopathology , Humans , Male , Middle Aged , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism
15.
Methods Mol Biol ; 1651: 49-64, 2017.
Article in English | MEDLINE | ID: mdl-28801899

ABSTRACT

The application of luciferase reporter genes to provide quantitative outputs for the activation of promoters is a well-established technique in molecular biology. Luciferase catalyzes an enzymatic reaction, which in the presence of the substrate luciferin produces photons of light relative to its molar concentration. The luciferase transgene can be genetically inserted at the first intron of a target gene to act as a surrogate for the gene's endogenous expression in cells and transgenic mice. Alternatively, promoter sequences can be excised and/or amplified from genomic sources or constructed de novo and cloned upstream of luciferase in an expression cassette transfected into cells. More recently, the development of synthetic promoters where the essential components of an RNA polymerase binding site and transcriptional start site are fused with various upstream regulatory sequences are being applied to drive reporter gene expression. We have developed a high-throughput cloning strategy to develop lentiviral luciferase reporters driven by transcription factor activated synthetic promoters. Lentiviruses integrate their payload cassette into the host cell genome, thereby facilitating the study of gene expression not only in the transduced cells but also within all subsequent daughter cells. In this manuscript we describe the design, vector construction, lentiviral transduction, and luciferase quantitation of transcription factor activated reporters (TFARs) in vitro and in vivo.


Subject(s)
Genes, Reporter , Luciferases, Firefly/analysis , Luminescent Agents/analysis , Luminescent Measurements/methods , Promoter Regions, Genetic , Transcriptional Activation , Animals , Cloning, Molecular , Fireflies/enzymology , Fireflies/genetics , HEK293 Cells , Humans , Lentivirus/genetics , Luciferases, Firefly/genetics , Luminescent Agents/metabolism , Mice , Transcription Factors/metabolism , Transduction, Genetic/methods , Transgenes
16.
Sci Rep ; 7(1): 6374, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743959

ABSTRACT

Luciferase bioimaging in living animals is increasingly being applied in many fields of biomedical research. Rodent imaging usually involves anaesthetising the animal during data capture, however, the biological consequences of anaesthesia have been largely overlooked. We have evaluated luciferase bioimaging in conscious, unrestrained mice after neonatal intracranial or intravascular administration of lentiviral, luciferase reporter cassettes (biosensors); we present real-time analyses from the first day of life to adulthood. Anaesthetics have been shown to exert both neurotoxic and neuroprotective effects during development and in models of brain injury. Mice subjected to bioimaging after neonatal intracranial or intravascular administration of biosensors, targeting the brain and liver retrospectively showed no significant difference in luciferase expression when conscious or unconscious throughout development. We applied conscious bioimaging to the assessment of NFκB and STAT3 transcription factor activated reporters during the earliest stages of development in living, unrestrained pups. Our data showed unique longitudinal activities for NFκB and STAT3 in the brain of conscious mice. Conscious bioimaging was applied to a neonatal mouse model of cerebral palsy (Hypoxic-Ischaemic Encephalopathy). Imaging of NFκB reporter before and after surgery showed a significant increase in luciferase expression, coinciding with secondary energy failure, in lesioned mice compared to controls.


Subject(s)
Brain/metabolism , Cerebral Palsy/metabolism , Liver/metabolism , Luciferases/metabolism , Molecular Imaging/methods , Animals , Animals, Newborn , Biosensing Techniques/methods , Cerebral Palsy/surgery , Consciousness , Disease Models, Animal , Genetic Vectors/administration & dosage , Injections, Intra-Arterial , Lentivirus/genetics , Luciferases/genetics , Mice , Mice, Transgenic , NF-kappa B/genetics , NF-kappa B/metabolism , Recombinant Proteins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
17.
Mol Ther ; 25(8): 1790-1804, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28550974

ABSTRACT

Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model.


Subject(s)
Gene Transfer Techniques , Genetic Vectors/genetics , HIV-1/genetics , RNA, Viral , Regulatory Sequences, Ribonucleic Acid , Transduction, Genetic , Animals , Cell Line , Disease Models, Animal , Factor IX/genetics , Gene Expression , Gene Order , Genes, Reporter , Genetic Therapy , Genome, Viral , HIV Long Terminal Repeat , Hemophilia B/blood , Hemophilia B/genetics , Hemophilia B/therapy , Humans , Mice , Proviruses/genetics , Recombination, Genetic , Transgenes , Virus Replication/genetics
18.
Sci Rep ; 7: 41874, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28157201

ABSTRACT

Molecular mechanisms regulating liver repair following cholestatic injury remain largely unknown. We have combined a mouse model of acute cholestatic liver injury, partial bile duct ligation (pBDL), with a novel longitudinal bioimaging methodology to quantify transcription factor activity during hepatic injury and repair. We administered lentiviral transcription factor activated luciferase/eGFP reporter (TFAR) cassettes to neonatal mice enabling longitudinal TFAR profiling by continued bioimaging throughout the lives of the animals and following pBDL in adulthood. Neonatal intravascular injection of VSV-G pseudotyped lentivirus resulted in almost exclusive transduction of hepatocytes allowing analysis of hepatocyte-specific transcription factor activity. We recorded acute but transient responses with NF-κB and Smad2/3 TFAR whilst our Notch reporter was repressed over the 40 days of evaluation post-pBDL. The bipotent hepatic progenitor cell line, HepaRG, can be directed to differentiate into hepatocytes and biliary epithelia. We found that forced expression of the Notch inhibitor NUMB in HepaRG resulted in enhanced hepatocyte differentiation and proliferation whereas over-expressing the Notch agonist JAG1 resulted in biliary epithelial differentiation. In conclusion, our data demonstrates that hepatocytes rapidly upregulate NF-κB and Smad2/3 activity, whilst repressing Notch signalling. This transcriptional response to cholestatic liver injury likely promotes partial de-differentiation to allow pro-regenerative proliferation of hepatocytes.


Subject(s)
Cholestasis/metabolism , Hepatocytes/metabolism , Liver Diseases/metabolism , Signal Transduction , 3T3 Cells , Animals , Cell Differentiation , Cell Proliferation , Cholestasis/complications , Cholestasis/diagnostic imaging , Epithelial Cells/cytology , Epithelial Cells/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , HeLa Cells , Hepatocytes/cytology , Hepatocytes/physiology , Humans , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , Lentivirus/genetics , Liver Diseases/diagnostic imaging , Liver Diseases/etiology , Luciferases/genetics , Luciferases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
19.
Sci Rep ; 7: 39945, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059114

ABSTRACT

Endothelial dysfunction caused by the combined action of disturbed flow, inflammatory mediators and oxidants derived from cigarette smoke is known to promote coronary atherosclerosis and increase the likelihood of myocardial infarctions and strokes. Conversely, laminar flow protects against endothelial dysfunction, at least in the initial phases of atherogenesis. We studied the effects of TNFα and cigarette smoke extract on human coronary artery endothelial cells under oscillatory, normal laminar and elevated laminar shear stress for a period of 72 hours. We found, firstly, that laminar flow fails to overcome the inflammatory effects of TNFα under these conditions but that cigarette smoke induces an anti-oxidant response that appears to reduce endothelial inflammation. Elevated laminar flow, TNFα and cigarette smoke extract synergise to induce expression of the transcriptional regulator activating transcription factor 3 (ATF3), which we show by adenovirus driven overexpression, decreases inflammatory gene expression independently of activation of nuclear factor-κB. Our results illustrate the importance of studying endothelial dysfunction in vitro over prolonged periods. They also identify ATF3 as an important protective factor against endothelial dysfunction. Modulation of ATF3 expression may represent a novel approach to modulate proinflammatory gene expression and open new therapeutic avenues to treat proinflammatory diseases.


Subject(s)
Activating Transcription Factor 3/metabolism , Coronary Vessels/immunology , Cytokines/genetics , Smoke/adverse effects , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation , Activating Transcription Factor 3/genetics , Antioxidants , Cells, Cultured , Coronary Vessels/cytology , Coronary Vessels/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Models, Biological , Shear Strength , Stress, Mechanical , Nicotiana
20.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L258-L267, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27979861

ABSTRACT

Air-liquid interface (ALI) culture of primary airway epithelial cells enables mucociliary differentiation providing an in vitro model of the human airway, but their proliferative potential is limited. To extend proliferation, these cells were previously transduced with viral oncogenes or mouse Bmi-1 + hTERT, but the resultant cell lines did not undergo mucociliary differentiation. We hypothesized that use of human BMI-1 alone would increase the proliferative potential of bronchial epithelial cells while retaining their mucociliary differentiation potential. Cystic fibrosis (CF) and non-CF bronchial epithelial cells were transduced by lentivirus with BMI-1 and then their morphology, replication kinetics, and karyotype were assessed. When differentiated at ALI, mucin production, ciliary function, and transepithelial electrophysiology were measured. Finally, shRNA knockdown of DNAH5 in BMI-1 cells was used to model primary ciliary dyskinesia (PCD). BMI-1-transduced basal cells showed normal cell morphology, karyotype, and doubling times despite extensive passaging. The cell lines underwent mucociliary differentiation when cultured at ALI with abundant ciliation and production of the gel-forming mucins MUC5AC and MUC5B evident. Cilia displayed a normal beat frequency and 9+2 ultrastructure. Electrophysiological characteristics of BMI-1-transduced cells were similar to those of untransduced cells. shRNA knockdown of DNAH5 in BMI-1 cells produced immotile cilia and absence of DNAH5 in the ciliary axoneme as seen in cells from patients with PCD. BMI-1 delayed senescence in bronchial epithelial cells, increasing their proliferative potential but maintaining mucociliary differentiation at ALI. We have shown these cells are amenable to genetic manipulation and can be used to produce novel disease models for research and dissemination.


Subject(s)
Bronchi/cytology , Cell Differentiation , Cilia/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Mucus/metabolism , Polycomb Repressive Complex 1/metabolism , Animals , Axonemal Dyneins/metabolism , Cell Proliferation , Cell Shape , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Dyneins/metabolism , Electric Impedance , Electrophysiological Phenomena , Gene Knockdown Techniques , HEK293 Cells , Humans , Kartagener Syndrome/metabolism , Kartagener Syndrome/pathology , Kartagener Syndrome/physiopathology , Karyotyping , Mice , Microtubules/metabolism , Models, Biological , Phenotype , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...