Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 115(1): 94-8, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21141972

ABSTRACT

The equilibrium structures of cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, C(2)H(2)F(2), have been determined with high-level coupled cluster techniques combined with large basis sets, explicit consideration of core/valence, and scalar relativistic and higher order correlation effects. Excellent agreement was found with new semiexperimental structures, increasing the level of confidence in both approaches. Differences in bond lengths among ethylene and the fluoroethylenes are discussed.

2.
J Phys Chem A ; 114(34): 9309-18, 2010 Sep 02.
Article in English | MEDLINE | ID: mdl-20690633

ABSTRACT

Infrared (IR) spectra in the gas phase are reported for CF(2)=CHD and CF(2)=CD(2) in the region 350-4000 cm(-1). Ab initio calculations of an harmonic force-field and anharmonicity constants have been made with an MP2/aug-cc-pVTZ model. These enable a number of Fermi resonances in each species to be analyzed and a complete set of "observed" harmonic frequencies to be derived. The latter are combined with similar data for CF(2)=CH(2) in a scaling of the model harmonic force field to both anharmonic and harmonic frequencies. Inspection of the scale factors reveals minor defects of the model, evident in the out-of-plane wagging modes and in the CF stretch/CF stretch interaction force constant. Fermi resonance treatments involved in all isotopomers studied are compatible with the overall force-field refinement results. The treatment leaves a small anomaly in the (13)C shift on nu(1). Improved microwave spectra are reported for five isotopic species, and a semiexperimental equilibrium structure for F(2)C=CH(2) is determined and compared favorably with the structure obtained from new high-level ab initio calculations. Centrifugal distortion constants are predicted for the five isotopic species, and those for F(2)C=CH(2) are compared with values fit to microwave spectra.

3.
J Phys Chem A ; 114(18): 5728-42, 2010 May 13.
Article in English | MEDLINE | ID: mdl-20394448

ABSTRACT

Infrared spectra obtained in gas and liquid argon phases are reported for (12)CF(2) horizontal line(12)CH(2) and (12)CF(2) horizontal line(13)CH(2). These spectra firmly establish the positions of nu(3)(A(1)) and nu(6)(A(2)) for both isotopomers. Using anharmonicity constants from MP2 calculations, Fermi resonances affecting nu(1)(A(1)), nu(2)(A(1)), nu(3), and nu(8)(B(1)) are analyzed. Deperturbed fundamental frequencies from these analyses are used in conjunction with unaffected fundamentals and ab initio anharmonicity data to predict all 12 "observed" harmonic frequencies. A Darling-Dennison type resonance between 2nu(6) and nu(11) + nu(12) is diagnosed, the calculation of which from ab initio data requires modification of the existing second-order treatment of such constants, where Fermi resonance type terms are also present. Predictions are made of many overtone and combination band frequencies, aiding assignment of observed spectra. From the isolated CH stretching frequency obtained here of 3125.4 cm(-1), the C-H equilibrium bond length is predicted to be 1.0762(11) A.

4.
J Phys Chem A ; 112(40): 10006-16, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18774789

ABSTRACT

Anharmonic and related constants have been calculated for CH2Cl2, CD2Cl2, and CHDCl2 by using the program Gaussian03 and B3LYP and MP2 models. Bases used were 6-311++G** and cc-pVTZ. The size of grid used in the B3LYP/6-311++G** model had a noticeable effect on resulting data. Features of the MP2/6-311++G** calculations suggested a deleterious effect of the absence of f functions in this basis set. The need for the replacement of second-order terms in the perturbation theory formulas for the vibrational anharmonic constants x ij in the presence of Fermi resonance was explored, and minor resonances were found associated with the cubic constants varphi 122 and varphi 299 (d 0 isotopomer), phi122 and phi849 (d2), and phi278 (d1). Computed xij values for nuCH and nuCD motions agree quite well with earlier experimental data. Observed anharmonic frequencies, nu obsd, were corrected to "observed" harmonic frequencies, omega obsd, by using computed differences Delta = omegaQC-nuQC. These differences Delta are larger for the antisymmetric nuasCH2 mode than for symmetric nusCH2 motion. This fact made it necessary to use differing scale factors for the two kinds of CH stretching force constants in a subsequent scaling of the harmonic force field to nuobsd. Force field scaling was also carried out by refining to omega obsd. In both approaches, the B3LYP models required differing scale factors for symmetric and antisymmetric CCl stretching force constants, indicating a failure to compute an accurate C-Cl stretch-stretch interaction force constant. The MP2/cc-pVTZ force field was preferred. Both scaled and unscaled harmonic force fields were used to calculate centrifugal distortion constants (CDCs) and contributions to the vibrational dependence of the rotational constants (alphas). Variations in the CDCs can, in part, be explained by the magnitudes of the frequencies used in the scaling process.

5.
J Phys Chem A ; 112(29): 6760-71, 2008 Jul 24.
Article in English | MEDLINE | ID: mdl-18582021

ABSTRACT

Potential functions and harmonic (omega(i)) and anharmonic (nu(i)) fundamental frequencies have been calculated for 1,1-difluorocyclopropane (DFCP) and its d4 and d2 isotopomers using the program Gaussian 03. B3LYP and MP2 models were employed, each with the bases 6-311++G** and cc-pVTZ. Anharmonicity corrections Delta(i) = omega(i) - nu(i) are listed and shown to be different for symmetric and antisymmetric CH stretching modes in situations where Fermi resonance appears to be absent. The same effect is missing in C2H4, for which similar calculations were made. The quadratic force fields for DFCP have been scaled in symmetry coordinate space with 15 scale factors both to observed frequencies nu(obsd)and also to omega (obsd), where omega(obsd) = nu(obsd) + Delta. With nu(obsd) especially, different scale factors are needed for the symmetric and antisymmetric CH stretching force constants due to their differing anharmonicities. The source of the latter in the quartic and cubic force field is explored. MP2 calculations of valence interaction force constants involving the stretching of bonds on a common carbon atom are preferred to those from a B3LYP model. In either model, scaling to omega(obsd) rather than to nu(obsd) does not remove the necessity of varying scale factors for differing types of motion in the same group. Theoretical values of the five quartic centrifugal distortion constants are listed for the normal species and compared with new experimental data. The predictions are sufficiently good to be useful in fitting pure rotational transitions. A weakness is identified in the current Gaussian 03 code for the calculation of vibration-rotation quantities, and limitations are noted in the manner in which Fermi resonance is handled.

6.
J Phys Chem A ; 111(13): 2498-506, 2007 Apr 05.
Article in English | MEDLINE | ID: mdl-17388345

ABSTRACT

IR and Raman spectra are reported for 1,1-difluorocyclopropane-d0, -d2, and -d4, and complete assignments of vibrational fundamentals are given for these species. These assignments are consistent with predictions of frequencies, intensities, and Raman depolarization ratios computed with the B3LYP/cc-pVTZ quantum chemical (QC) model. Ground state rotational constants for five 13C and deuterium isotopomers, obtained from published microwave spectra, were "corrected" into equilibrium rotational constants. The needed vibration-rotation interaction constants were computed with QC models after scaling the force constants. A semi-experimental equilibrium structure, fitted to the equilibrium moments of inertia, is rC1C = 1.470(1) A, rCC = 1.546(1) A, rCF = 1.343(1) A, rCH = 1.078(1) A, alphaFCF = 109.5(1), alphaFCC = 119.4(1) degrees, alphaHCH = 116.7(1) degrees, alphaC1CH = 117.4(1) degrees, and alphaCCH = 117.1(1) degrees. This structure agrees within the indicated uncertainties with the ab initio structure obtained from an extrapolated set of CCSD(T)/aug-cc-pVnZ calculations except for rCC = 1.548 A. The F2C-CH2 bonds are significantly shortened and strengthened; the H2C-CH2 bond is significantly lengthened and weakened.

7.
J Phys Chem A ; 110(26): 8044-59, 2006 Jul 06.
Article in English | MEDLINE | ID: mdl-16805490

ABSTRACT

Quadratic quantum-chemical force fields have been determined for s-trans-1,3-butadiene using B3LYP and MP2 methods. Basis sets included 6-311++G, cc-pVTZ, and aug-cc-pVTZ. Scaling of the force fields was based on frequency data for up to 11 isotopomers, some of these data being original. A total of 18 scale factors were employed, with, in addition, an alteration to one off-diagonal force constant in the A(u) species. MP2 calculations without f functions in the basis perform badly in respect of out-of-plane bending mode frequencies. Centrifugal distortion constants and harmonic contributions to vibration-rotation constants (alphas) have been calculated. Existing experimental frequency data for all isotopomers are scrutinized, and a number of reassignments and diagnoses of Fermi resonance made, particularly in the nu(CH) region. The three types of CH bond in butadiene were characterized in terms of bond length and isolated CH stretching frequency, the latter reflecting data in the nu(CD) region. Broad agreement was achieved with earlier results from local mode studies. Differences in CH bond properties resemble similar differences in propene. A simplified sample setup for recording FT-Raman spectra of gases was applied to four isotopomers of butadiene.

8.
J Phys Chem A ; 110(23): 7461-9, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759136

ABSTRACT

Equilibrium structures have been determined for s-trans-1,3-butadiene and ethylene after adjusting the rotational constants obtained from rotational spectroscopy by vibration-rotation constants calculated from the results of quantum chemical calculations. For butadiene, the formal C=C bond length is 1.338 A, and the formal C-C bond length is 1.454 A. For ethylene, the C=C bond length is 1.3305 A. These values appear to be good to 0.001 A. It is shown for the first time that pi-electron delocalization has the structural consequences of increasing the length of the formal double bond by 0.007 A and decreasing the length of the formal single bond by 0.016 A. Comparisons are made with structures computed with several quantum chemical models. The MP2/cc-pVTZ results agree best with the new re structure.


Subject(s)
Butadienes/chemistry , Ethylenes/chemistry , Electrons , Molecular Conformation , Molecular Structure , Quantum Theory
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(7): 1479-89, 2005 May.
Article in English | MEDLINE | ID: mdl-15820881

ABSTRACT

Torsional frequencies of methyl and silyl groups occurring in a range of molecules have been calculated by HF, B3LYP and MP2 methods using several basis sets. Linear correlations between calculated and observed values are derived and used to predict unobserved or dubious frequencies. The current experimental value for the E torsion in trimethylphosphine is questioned. The relative merits of the B3LYP and MP2 methods are explored. MP2 calculations can show wide variation with respect to basis set. In cases where two or more silyl groups are attached to a common atom, as in disilylsulphide (SiH3)2S, disilylmethane (SiH3)2CH2, trisilylmethane (SiH3)3CH and tetrasilylmethane (SiH3)4C, marked differences occur between B3LYP and MP2 estimates. These may be linked to concomitant differences in conformation or potential barrier restraining internal rotation. In disilylmethane the B3LYP results agree much better with experiment than those from the MP2 method. HF and B3LYP calculations for disilylsulphide and trisilylphosphine give normal C2v and C3v equilibrium structures, respectively, but in MP2 structures the silyl groups are twisted through 6-13 degrees yielding C2 and C3 configurations. It may be possible to distinguish between these structures through the observation of isolated SiH stretching frequencies in the spectra of fully deuterated materials. Dispersion forces could contribute to the twisting calculated by the MP2 method. Further studies of the microwave and vibrational spectra of disilylsulphide and trisilylphosphine isotopomers are needed.


Subject(s)
Phosphines/chemistry , Silanes/chemistry , Spectrophotometry/methods , Sulfides/chemistry , Electrons , Hydrogen/chemistry , Microwaves , Molecular Conformation , Quantum Theory , Silicon/chemistry , Spectrophotometry, Infrared , Spectrum Analysis, Raman , Temperature
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(5): 911-25, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11942397

ABSTRACT

Quantum-chemical calculations at HF, MP2 and B3LYP levels with 6-31G* and 6-311G** basis sets are reported for disilylamine, NH(SiH3)2. The equilibrium structure is found to vary with both level and basis set, all but one of the structures exhibiting a small lack of planarity of the HNSi2 system. The barrier to inversion, however, is found to be very low, at most 38 cm(-1). Vibration frequencies and intensities are calculated. The frequencies are scaled, where possible, either using updated infrared data or with the aid of factors transferred from N(CH3)(SiH3)2. Unobserved frequencies due to the v(s)NSi2, deltaNSi2 and delta(perpendicular)NH modes are predicted near 610, 210 and 360 cm(-1), respectively. The lower silyl torsion lies below 40 cm(-1). The appearance of a single broad vSiH band in gas-phase samples of both NH(SiH3)2 and NH(SiH3)(SiD3) is suggestive of signal averaging due to internal rotation. The frequencies v(is)SiH, infrared intensities and Raman scattering activities of the bands due to an isolated SiH bond in an otherwise deuterated species are calculated and correlated with the torsional angle of this bond and with the Mulliken charge on the hydrogen atom. The strength of the bond is a minimum, and the infrared intensity and Raman scattering activity are maxima, when the bond direction is roughly orthogonal to the skeletal plane. A major part of the frequency and intensity variations is attributed to n(p)(N)-sigma*(Si-H)) hyperconjugation which, NBO calculations show, reaches a maximum for this conformation. However, systematic smaller variations are found for SiH bonds lying in the skeletal plane, which reflect the proximity of the other silyl group and only partly correlate with Mulliken charge. vSiH-vSiH interaction force constants, f', are calculated for pairs of SiH bonds in different silyl groups and compared with the corresponding dipole-dipole potential energy, the latter calculated using a classical treatment of the interaction between point dipoles arising from delta mu/delta r for the SiH bonds involved. The gradient of the correlation is very close to that expected from the theory, but a negative intercept indicates the presence of additional factors.


Subject(s)
Silicon Compounds/chemistry , Silicon/chemistry , Biophysical Phenomena , Biophysics , Models, Molecular , Quantum Theory , Spectrophotometry, Infrared , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...