Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 58: 112-119, 2017 10.
Article in English | MEDLINE | ID: mdl-28728117

ABSTRACT

This study reports the identification and characterization of markers of Alzheimer's disease (AD) in aged sheep (Ovis aries) as a preliminary step toward making a genetically modified large animal model of AD. Importantly, the sequences of key proteins involved in AD pathogenesis are highly conserved between sheep and human. The processing of the amyloid-ß (Aß) protein is conserved between sheep and human, and sheep Aß1-42/Aß1-40 ratios in cerebrospinal fluid (CSF) are also very similar to human. In addition, total tau and neurofilament light levels in CSF are comparable with those found in human. The presence of neurofibrillary tangles in aged sheep brain has previously been established; here, we report for the first time that plaques, the other pathologic hallmark of AD, are also present in the aged sheep brain. In summary, the biological machinery to generate the key neuropathologic features of AD is conserved between the human and sheep, making the sheep a good candidate for future genetic manipulation to accelerate the condition for use in pathophysiological discovery and therapeutic testing.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/cerebrospinal fluid , Animals, Genetically Modified , Disease Models, Animal , Neurofilament Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Biomarkers/cerebrospinal fluid , Brain/metabolism , Brain/pathology , Humans , Neurofibrillary Tangles , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Sheep
2.
R Soc Open Sci ; 4(11): 170730, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29291063

ABSTRACT

Mitochondrial DNA sequence is frequently used to infer species' boundaries, as divergence is relatively rapid when populations are reproductively isolated. However, the shared history of a non-recombining gene naturally leads to correlation of pairwise differences, resulting in mtDNA clusters that might be mistaken for evidence of multiple species. There are four distinct processes that can explain high levels of mtDNA sequence difference within a single sample. Here, we examine one case in detail as an exemplar to distinguish among competing hypotheses. Within our sample of tree weta (Hemideina crassidens; Orthoptera), we found multiple mtDNA haplotypes for a protein-coding region (cytb/ND1) that differed by a maximum of 7.9%. From sequencing the whole mitochondrial genome of two representative individuals, we found evidence of constraining selection. Heterozygotes were as common as expected under random mating at five nuclear loci. Morphological traits and nuclear markers did not resolve the mtDNA groupings of individuals. We concluded that the large differences found among our sample of mtDNA sequences were simply owing to a large population size over an extended period of time allowing an equilibrium between mutation and drift to retain a great deal of genetic diversity within a single species.

3.
Ecol Evol ; 6(8): 2390-404, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27066230

ABSTRACT

Hybridization can create the selective force that promotes assortative mating but hybridization can also select for increased hybrid fitness. Gene flow resulting from hybridization can increase genetic diversity but also reduce distinctiveness. Thus the formation of hybrids has important implications for long-term species coexistence. This study compares the interaction between the tree weta Hemideina thoracica and its two neighboring species; H. crassidens and H. trewicki. We examined the ratio of parent and hybrid forms in natural areas of sympatry. Individuals with intermediate phenotype were confirmed as first generation hybrids using nine independent genetic markers. Evidence of gene flow from successful hybridization was sought from the distribution of morphological and genetic characters. Both species pairs appear to be largely retaining their own identity where they live in sympatry, each with a distinct karyotype. Hemideina thoracica and H. trewicki are probably reproductively isolated, with sterile F1 hybrids. This species pair shows evidence of niche differences with adult size and timing of maturity differing where Hemideina thoracica is sympatric with H. trewicki. In contrast, evidence of a low level of introgression was detected in phenotypes and genotypes where H. thoracica and H. crassidens are sympatric. We found no evidence of size divergence although color traits in combination with hind tibia spines reliably distinguish the two species. This species pair show a bimodal hybrid zone in the absence of assortative mating and possible sexual exclusion by H. thoracica males in the formation of F1 hybrids.

SELECTION OF CITATIONS
SEARCH DETAIL
...