Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Chem ; 28(22): 4321-4342, 2021.
Article in English | MEDLINE | ID: mdl-32107991

ABSTRACT

Cancer stem cells (CSCs) constitute a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity, and the ability to give rise to the heterogeneous lineages of cancer cells that comprise the tumor. CSCs exhibit intrinsic mechanisms of resistance to virtually all conventional cancer therapeutics, allowing them to survive current cancer therapies and to initiate tumor recurrence and metastasis. Different pathways and mechanisms that confer resistance and survival of CSCs, including activation of the Wnt/ß- catenin, Sonic Hedgehog, Notch, PI3K/Akt/mTOR and STAT3 signaling pathways, expression of aldehyde dehydrogenase 1 (ALDH1) and oncogenic microRNAs, and acquisition of epithelial-mesenchymal transition (EMT), have been identified recently. Certain phytochemicals, in particular curcumin, epigallocatechin-3-gallate (EGCG), sulforaphane, resveratrol and genistein have been shown to interfere with these intrinsic CSC pathways in vitro and in human xenograft mice, leading to elimination of CSCs. Moreover, recent clinical trials have demonstrated the therapeutic efficacy of five phytochemicals, alone or in combination with modern cancer therapeutics, and in various types of cancer. Since current cancer therapies fail to eradicate CSCs, leading to cancer recurrence and progression, targeting of CSCs with phytochemicals such as curcumin, EGCG, sulforaphane, resveratrol and genistein, combined with each other and/or in combination with conventional cytotoxic drugs and novel cancer therapeutics, may offer a novel therapeutic strategy against cancer.


Subject(s)
Curcumin , Animals , Catechin/analogs & derivatives , Curcumin/pharmacology , Curcumin/therapeutic use , Genistein/pharmacology , Genistein/therapeutic use , Hedgehog Proteins , Humans , Isothiocyanates , Mice , Neoplasm Recurrence, Local , Neoplastic Stem Cells , Phosphatidylinositol 3-Kinases , Phytochemicals/pharmacology , Resveratrol/pharmacology , Sulfoxides
2.
Diagnosis (Berl) ; 8(2): 137-152, 2021 05 26.
Article in English | MEDLINE | ID: mdl-32324159

ABSTRACT

The concept that disease rooted principally in chronic aberrant constitutive and reactive activation of mast cells (MCs), without the gross MC neoplasia in mastocytosis, first emerged in the 1980s, but only in the last decade has recognition of "mast cell activation syndrome" (MCAS) grown significantly. Two principal proposals for diagnostic criteria have emerged. One, originally published in 2012, is labeled by its authors as a "consensus" (re-termed here as "consensus-1"). Another sizable contingent of investigators and practitioners favor a different approach (originally published in 2011, newly termed here as "consensus-2"), resembling "consensus-1" in some respects but differing in others, leading to substantial differences between these proposals in the numbers of patients qualifying for diagnosis (and thus treatment). Overdiagnosis by "consensus-2" criteria has potential to be problematic, but underdiagnosis by "consensus-1" criteria seems the far larger problem given (1) increasing appreciation that MCAS is prevalent (up to 17% of the general population), and (2) most MCAS patients, regardless of illness duration prior to diagnosis, can eventually identify treatment yielding sustained improvement. We analyze these proposals (and others) and suggest that, until careful research provides more definitive answers, diagnosis by either proposal is valid, reasonable, and helpful.


Subject(s)
Mastocytosis , Consensus , Humans , Mast Cells , Mastocytosis/diagnosis
3.
Pharmacol Res ; 157: 104859, 2020 07.
Article in English | MEDLINE | ID: mdl-32360480

ABSTRACT

Outbreak and pandemic of coronavirus SARS-CoV-2 in 2019/2020 will challenge global health for the future. Because a vaccine against the virus will not be available in the near future, we herein try to offer a pharmacological strategy to combat the virus. There exists a number of candidate drugs that may inhibit infection with and replication of SARS-CoV-2. Such drugs comprise inhibitors of TMPRSS2 serine protease and inhibitors of angiotensin-converting enzyme 2 (ACE2). Blockade of ACE2, the host cell receptor for the S protein of SARS-CoV-2 and inhibition of TMPRSS2, which is required for S protein priming may prevent cell entry of SARS-CoV-2. Further, chloroquine and hydroxychloroquine, and off-label antiviral drugs, such as the nucleotide analogue remdesivir, HIV protease inhibitors lopinavir and ritonavir, broad-spectrum antiviral drugs arbidol and favipiravir as well as antiviral phytochemicals available to date may limit spread of SARS-CoV-2 and morbidity and mortality of COVID-19 pandemic.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/drug therapy , Serine Endopeptidases/drug effects , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/mortality , SARS-CoV-2 , Serine Proteinase Inhibitors/pharmacology
4.
Curr Top Med Chem ; 20(16): 1423-1433, 2020.
Article in English | MEDLINE | ID: mdl-32416679

ABSTRACT

Like other human pathogenic viruses, coronavirus SARS-CoV-2 employs sophisticated macromolecular machines for viral host cell entry, genome replication and protein processing. Such machinery encompasses SARS-CoV-2 envelope spike (S) glycoprotein required for host cell entry by binding to the ACE2 receptor, viral RNA-dependent RNA polymerase (RdRp) and 3-chymotrypsin-like main protease (3Clpro/Mpro). Under the pressure of the accelerating COVID-19 pandemic caused by the outbreak of SARS-CoV-2 in Wuhan, China in December 2019, novel and repurposed drugs were recently designed and identified for targeting the SARS-CoV-2 reproduction machinery, with the aim to limit the spread of SARS-CoV-2 and morbidity and mortality due to the COVID-19 pandemic.


Subject(s)
Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Pneumonia, Viral/drug therapy , Virus Internalization , Virus Replication , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Cysteine Endopeptidases , Humans , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...