Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 502, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755153

ABSTRACT

Leveraging high performance computing, remote sensing, geographic data science, machine learning, and computer vision, Oak Ridge National Laboratory has partnered with Federal Emergency Management Agency (FEMA) to build a baseline structure inventory covering the US and its territories to support disaster preparedness, response, and recovery. The dataset contains more than 125 million structures with critical attribution, and is ready to be used by federal agencies, local government and first responders to accelerate on-the-ground response to disasters, further identify vulnerable areas, and develop strategies to enhance the resilience of critical structures and communities. Data can be freely and openly accessed through Figshare data repository, ESRI's Living Atlas or FEMA's Geodata platform.

2.
Sci Data ; 5: 180217, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30351298

ABSTRACT

Buildings in the developing world are inadequately mapped. Lack of such critical geospatial data adds unnecessary challenges to locating and reaching a large segment of the world's most vulnerable population, impeding sustainability goals ranging from disaster relief to poverty reduction. Use of volunteered geographic information (VGI) has emerged as a widely accepted source to fill such voids. Despite its promise, availability of building maps for developing countries significantly lags behind demand. We present a new approach, coupling deep convolutional neural networks (CNNs) with VGI for automating building map generation from high-resolution satellite images for Kano state, Nigeria. Specifically, we trained a CNN with VGI building outlines of limited quality and quantity and generated building maps for a 50,000 km2 area. Resulting maps are in strong agreement with existing settlement maps and require a fraction of the manual input needed for the latter. The VGI-based maps will provide support across multiple facets of socioeconomic development in Kano state, and demonstrates potential advancements in current mapping capabilities in resource constrained countries.

3.
Remote Sens Environ ; 204: 786-798, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29302127

ABSTRACT

Although remote sensing has long been used to aid in the estimation of population, it has usually been in the context of spatial disaggregation of national census data, with the census counts serving both as observational data for specifying models and as constraints on model outputs. Here we present a framework for estimating populations from the bottom up, entirely independently of national census data, a critical need in areas without recent and reliable census data. To make observations of population density, we replace national census data with a microcensus, in which we enumerate population for a sample of small areas within the states of Kano and Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite imagery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and a model linking them to the population density observations, we produce population estimates across the two states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation framework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of any size and composition within the study region. Used in concert with previously published demographic estimates, our population estimates allowed for predictions of the population under 5 in ten administrative wards that fit strongly with reference data collected during polio vaccination campaigns.

4.
Proc Natl Acad Sci U S A ; 112(5): 1344-9, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605882

ABSTRACT

Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.


Subject(s)
Population Growth , Forecasting , Humans , Models, Theoretical , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...