Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sports (Basel) ; 11(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36828329

ABSTRACT

The purpose of this study was to compare the propulsion phase characteristics of the jump squat (JS), hexagonal barbell jump (HEXJ), and jump shrug (JShrug) performed across a spectrum of relative loads. Thirteen resistance-trained women (18-23 years old) performed JS, HEXJ, and JShrug repetitions at body mass (BM) or with 20, 40, 60, 80, or 100% BM during three separate testing sessions. Propulsion mean force (MF), duration (Dur), peak power output (PP), force at PP (FPP), and velocity at PP (VPP) were compared between exercises and loads using a series of 3 × 6 repeated measures ANOVA and Hedge's g effect sizes. There were no significant differences in MF or Dur between exercises. While load-averaged HEXJ and JShrug PP were significantly greater than the JS, there were no significant differences between exercises at any individual load. The JShrug produced significantly greater FPP than the JS and HEXJ at loads ranging from BM-60% BM, but not at 80 or 100% BM. Load-averaged VPP produced during the JS and HEXJ was significantly greater than the JShrug; however, there were no significant differences between exercises at any individual load. Practically meaningful differences between exercises indicated that the JShrug produced greater magnitudes of force during shorter durations compared to the JS and HEXJ at light loads (BM-40%). The JS and HEXJ may be classified as more velocity-dominant exercises while the JShrug may be more force-dominant. Thus, it is important to consider the context in which each exercise is prescribed for resistance-trained women to provide an effective training stimulus.

2.
J Sports Sci Med ; 21(4): 504-516, 2022 12.
Article in English | MEDLINE | ID: mdl-36523888

ABSTRACT

The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre- and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p > 0.05). The PULL group displayed small-moderate (g = 0.25-0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00-0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12-0.04) and velocity variables (g = 0.32-0.46), respectively. The OL group displayed moderate (g = 0.48-0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47-0.55) improvements. The CATCH group displayed trivial-small (g = -0.39-0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p > 0.05). Performing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal.


Subject(s)
Muscle Strength , Resistance Training , Male , Humans , Muscle Strength/physiology , Weight Lifting/physiology , Athletes , Quadriceps Muscle/diagnostic imaging
3.
J Strength Cond Res ; 34(7): 1808-1818, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32398635

ABSTRACT

Suchomel, TJ, McKeever, SM, and Comfort, P. Training with weightlifting derivatives: The effects of force and velocity overload stimuli. J Strength Cond Res 34(7): 1808-1818, 2020-The purposes of this study were to compare the training effects of weightlifting movements performed with (CATCH) or without (PULL) the catch phase of clean derivatives performed at the same relative loads or training without the catch phase using a force- and velocity-specific overload stimulus (OL) on isometric and dynamic performance tasks. Twenty-seven resistance-trained men completed 10 weeks of training as part of the CATCH, PULL, or OL group. The CATCH group trained using weightlifting catching derivatives, while the PULL and OL groups used biomechanically similar pulling derivatives. The CATCH and PULL groups were prescribed the same relative loads, while the OL group was prescribed force- and velocity-specific loading that was exercise and phase specific. Preintervention and postintervention isometric midthigh pull (IMTP), relative one repetition maximum power clean (1RM PC), 10-, 20-, and 30-m sprint, and 505 change of direction on the right (505R) and left (505L) leg were examined. Statistically significant differences in preintervention to postintervention percent change were present for relative IMTP peak force, 10-, 20-, and 30-m sprints, and 505L (all p < 0.03), but not for relative 1RM PC or 505R (p > 0.05). The OL group produced the greatest improvements in each of the examined characteristics compared with the CATCH and PULL groups with generally moderate to large practical effects being present. Using a force- and velocity-specific overload stimulus with weightlifting pulling derivatives may produce superior adaptations in relative strength, sprint speed, and change of direction compared with submaximally loaded weightlifting catching and pulling derivatives.


Subject(s)
Muscle, Skeletal/physiology , Resistance Training/methods , Weight Lifting/physiology , Adaptation, Physiological , Adolescent , Adult , Biomechanical Phenomena , Humans , Male , Movement , Muscle Strength , Physical Exertion , Young Adult
4.
J Funct Morphol Kinesiol ; 5(2)2020 May 01.
Article in English | MEDLINE | ID: mdl-33467244

ABSTRACT

The purpose of this study was to examine the changes in squat jump (SJ) and countermovement jump (CMJ) force-time curve characteristics following 10 weeks of training with either load-matched weightlifting catching (CATCH) or pulling derivatives (PULL) or pulling derivatives that included force- and velocity-specific loading (OL). Twenty-five resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups. Participants completed a 10 week, group-specific training program. SJ and CMJ height, propulsion mean force, and propulsion time were compared at baseline and after 3, 7, and 10 weeks. In addition, time-normalized SJ and CMJ force-time curves were compared between baseline and after 10 weeks. No between-group differences were present for any of the examined variables, and only trivial to small changes existed within each group. The greatest improvements in SJ and CMJ height were produced by the OL and PULL groups, respectively, while only trivial changes were present for the CATCH group. These changes were underpinned by greater propulsion forces and reduced propulsion times. The OL group displayed significantly greater relative force during the SJ and CMJ compared to the PULL and CATCH groups, respectively. Training with weightlifting pulling derivatives may produce greater vertical jump adaptations compared to training with catching derivatives.

5.
J Hum Kinet ; 68: 109-122, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31531137

ABSTRACT

The purpose of this study was to compare the power production characteristics of the jump squat (JS), hexagonal barbell jump (HEXJ), and jump shrug (JShrug) across a spectrum of relative loads. Fifteen resistance-trained men completed three testing sessions where they performed repetitions of either the JS, HEXJ, or JShrug at body mass (BM) or with 20, 40, 60, 80, or 100% of their BM. Relative peak power (PPRel), relative force at PP (FPP), and velocity at PP (VPP) were compared between exercises and loads. In addition, power-time curves at each load were compared between exercises. Load-averaged HEXJ and JShrug PPRel were statistically greater than the JS (both p < 0.01), while no difference existed between the HEXJ and the JShrug (p = 1.000). Load-averaged JShrug FPP was statistically greater than both the JS and the HEXJ (both p < 0.001), while no statistical difference existed between the JS and the HEXJ (p = 0.111). Load-averaged JS and HEXJ VPP were statistically greater than the JShrug (both p < 0.01). In addition, HEXJ VPP was statistically greater than the JS (p = 0.009). PPRel was maximized at 40, 40, and 20% BM for the JS, HEXJ, and JShrug, respectively. The JShrug possessed statistically different power-time characteristics compared to both the JS and the HEXJ during the countermovement and propulsion phases. The HEXJ and the JShrug appear to be superior exercises for PPRel compared to the JS. The HEXJ may be considered a more velocity-dominant exercise, while the JShrug may be a more force-dominant one.

SELECTION OF CITATIONS
SEARCH DETAIL
...