Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 92(11): 5607-19, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19841221

ABSTRACT

Effects of forage source, concentration of metabolizable protein (MP), and type of carbohydrate on manure excretion by dairy cows and production of ammonia from that manure were evaluated using a central composite experimental design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Diets contained 10.7% rumen-degradable protein with variable concentrations of undegradable protein so that dietary MP ranged from 8.8 to 12%. Starch concentration ranged from 22 to 30% with a concomitant decrease in neutral detergent fiber. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block was a replicated 3 x 3 Latin square resulting in 108 observations. Manure output (urine and feces) was measured using total collection, and fresh feces and urine were combined into slurries and incubated for 48 h to measure NH3-N production. Feces, urine, and manure output averaged 50.5, 29.5, and 80.1 kg/d, respectively. Manure output increased with increasing dry matter intake (approximately 3.5 kg of manure/kg of dry matter intake), increased concentrations of alfalfa (mostly via changes in urine output), and decreased concentrations of starch (mostly via changes in fecal output). The amount of NH3-N produced per gram of manure decreased with increasing alfalfa because excreted N shifted from urine to feces. Increasing MP increased NH3-N produced per gram of manure mainly because of increased urinary N, but increased fecal N also contributed to the manure NH3. Manure NH3-N production per cow (accounts for effects on manure production and NH3-N produced per unit of manure) was least and milk protein yields were maximal for diets with high alfalfa (75% of the forage), moderate MP (11% of diet dry matter), and high starch (30% of diet dry matter).


Subject(s)
Ammonia/metabolism , Cattle/physiology , Diet/veterinary , Dietary Carbohydrates/metabolism , Dietary Proteins/metabolism , Manure/analysis , Nitrogen/metabolism , Animals , Cattle/metabolism , Dairying , Eating/physiology , Female , Potassium/metabolism
2.
J Dairy Sci ; 91(2): 646-52, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18218752

ABSTRACT

This experiment was conducted to determine the effect of a direct-fed microbial agent, Propionibacterium strain P169 (P169), on rumen fermentation, milk production, and health of periparturient and early-lactation dairy cows. Starting 2 wk before anticipated calving, cows were divided into 2 groups and fed a control diet or the control diet plus 6 x 10(11) cfu/d of P169. Cows were changed to a lactation diet at calving, and treatments continued until 119 d in milk. Rumen fluid samples were taken about 1 wk before calving, and at 1 and 14 wk after calving. Cows fed P169 had lower concentrations of acetate (mol/100 mol of total volatile fatty acids) at all time points, greater concentrations of propionate on the first and last sampling points, and greater concentrations of butyrate on the first 2 time points. Concentrations of glucose in plasma and milk and plasma concentrations of beta-hydroxybutyrate were not affected by treatment. Cows fed P169 had greater concentrations of plasma nonesterified fatty acids on d 7 of lactation. The high nonesterified fatty acids at that time point was probably related to the high production of milk during that period by cows fed the additive. Cows fed P169 during the first 17 wk of lactation produced similar amounts of milk (44.9 vs. 45.3 kg/d, treatment vs. control) with similar composition as cows fed the control diet. Calculated net energy use for milk production, maintenance, and body weight change was similar between treatments, but cows fed the P169 consumed less dry matter (22.5 vs. 23.5 kg/d), which resulted in a 4.4% increase in energetic efficiency.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Milk/metabolism , Propionibacterium , 3-Hydroxybutyric Acid/metabolism , Animal Feed/microbiology , Animals , Blood Glucose/metabolism , Body Weight , Fatty Acids, Nonesterified/metabolism , Female , Lactation , Milk/chemistry , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...