Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
Front Hum Neurosci ; 14: 64, 2020.
Article in English | MEDLINE | ID: mdl-32372928

ABSTRACT

Background: Transcranial direct current stimulation (tDCS) has been shown to be an inexpensive, safe, and effective way of augmenting a variety of cognitive abilities. Relatively recent advances in neuroimaging technology have provided the ability to measure brain activity concurrently during active brain stimulation rather than after stimulation. The effects on brain activity elicited by tDCS during active tDCS reported by initial studies have been somewhat conflicted and seemingly dependent on whether a behavioral improvement was observed. Objective: The current study set out to address questions regarding behavioral change, within and between-participant designs as well as differentiating the effects on hemodynamic amplitude and baseline during active tDCS stimulation. Methods: We tested the effects of transcranial direct current stimulation (tDCS) on anterior hemodynamics in prefrontal cortex during performance on a spatial memory task. Prefrontal cortex activity was measured with functional near infrared spectroscopy (fNIRS), a wearable and portable neuroimaging technique that utilizes near infrared light to measure cortical oxygenated and deoxygenated hemoglobin changes non-invasively. There were two groups, one group (n = 10) received only sham stimulation and the other group (n = 11) received sham followed by anodal stimulation to right ventral lateral prefrontal cortex. Results: Analyses revealed an increase in spatial memory performance following tDCS stimulation. This augmented performance was accompanied by changes to oxygenation (HbO-HbR) at the onset of the hemodynamic response in bilateral dorsolateral prefrontal cortex and left ventral medial prefrontal cortex. In these regions we also observed that stimulation improved neural processing efficiency, by reducing oxygenation and increasing performance from block to block. During and following tDCS stimulation, it was also observed that in bilateral dorsolateral prefrontal cortex the relationship between performance and oxygenation inverted, from a negative relationship to a positive relationship. Conclusion: The results suggest that tDCS is predominately a mechanism for changing neurons propensity for activity as opposed to their strength of activity. tDCS not only alters the efficiency of task relevant processing, but also the nature in which hemodynamic resources are used during augmented task performance.

3.
Front Hum Neurosci ; 13: 405, 2019.
Article in English | MEDLINE | ID: mdl-31824274

ABSTRACT

Adaptive training and workload management have the potential to drastically change safety and productivity in high-risk fields-including, air-traffic control, missile defense, and nuclear power-plant operations. Quantifying and classifying cognitive load is important for optimal performance. Brain-based metrics have previously been associated with mental workload. Specifically, attenuation of prefrontal activity has been linked to cognitive overload, a cognitive load state associated with degraded task performance. We hypothesized that a similar nonlinearity would be observed for cognitive underload. When underload and overload effects are combined, they should form a cubic function in lateral prefrontal cortex as a function of working memory load. The first of two studies assessed the relationships between spatial working memory load with subjective, behavioral and hemodynamic measures. A cubic function was observed in left dorsolateral prefrontal cortex (LDLPFC; Brodmann's Area 46) relating working memory load to changes in oxygenated hemoglobin (HbO). The second, two-part study tested the effects of workload transitions to different cognitive load states. Part-one replicated the effects observed in study one and identified transition points for individual performers. Part-two assessed the effects of transitioning to different cognitive load states. Cognitive load state transitions caused a deviation between behavioral measures and induced a significant change in the cubic function relating LDLPFC HbO and working memory load. From these observations, we present a hypothesis associating workload transitions with the disruption of cognitive process integration.

4.
Front Hum Neurosci ; 13: 295, 2019.
Article in English | MEDLINE | ID: mdl-31572146

ABSTRACT

There are a number of key data-centric questions that must be answered when developing classifiers for operator functional states. "Should a supervised or unsupervised learning approach be used? What degree of labeling and transformation must be performed on the data? What are the trade-offs between algorithm flexibility and model interpretability, as generally these features are at odds?" Here, we focus exclusively on the labeling of cognitive load data for supervised learning. We explored three methods of labeling cognitive states for three-state classification. The first method labels states derived from a tertiary split of trial difficulty during a spatial memory task. The second method was more adaptive; it employed a mixed-effects stress-strain curve and estimated an individual's performance asymptotes with respect to the same spatial memory task. The final method was similar to the second approach; however, it employed a mixed-effects Rasch model to estimate individual capacity limits within the context of item response theory for the spatial memory task. To assess the strength of each of these labeling approaches, we compared the area under the curve (AUC) for receiver operating curves (ROCs) from elastic net and random forest classifiers. We chose these classifiers based on a combination of interpretability, flexibility, and past modeling success. We tested these techniques across two groups of individuals and two tasks to test the effects of different labeling techniques on cross-person and cross-task transfer. Overall, we observed that the Rasch model labeling paired with a random forest classifier led to the best model fits and showed evidence of both cross-person and cross-task transfer.

5.
Front Hum Neurosci ; 13: 109, 2019.
Article in English | MEDLINE | ID: mdl-30983982

ABSTRACT

As semiautonomous driving systems are becoming prevalent in late model vehicles, it is important to understand how such systems affect driver attention. This study investigated whether measures from low-cost devices monitoring peripheral physiological state were comparable to standard EEG in predicting lapses in attention to system failures. Twenty-five participants were equipped with a low-fidelity eye-tracker and heart rate monitor and with a high-fidelity NuAmps 32-channel quick-gel EEG system and asked to detect the presence of potential system failure while engaged in a fully autonomous lane changing driving task. To encourage participant attention to the road and to assess engagement in the lane changing task, participants were required to: (a) answer questions about that task; and (b) keep a running count of the type and number of billboards presented throughout the driving task. Linear mixed effects analyses were conducted to model the latency of responses reaction time (RT) to automation signals using the physiological metrics and time period. Alpha-band activity at the midline parietal region in conjunction with heart rate variability (HRV) was important in modeling RT over time. Results suggest that current low-fidelity technologies are not sensitive enough by themselves to reliably model RT to critical signals. However, that HRV interacted with EEG to significantly model RT points to the importance of further developing heart rate metrics for use in environments where it is not practical to use EEG.

6.
Hum Factors ; 59(1): 147-162, 2017 02.
Article in English | MEDLINE | ID: mdl-28146680

ABSTRACT

OBJECTIVE: The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. BACKGROUND: Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. METHOD: Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. RESULTS: Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. CONCLUSION: Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. APPLICATION: This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.


Subject(s)
Attention/physiology , Executive Function/physiology , Hemodynamics/physiology , Memory, Short-Term/physiology , Motor Activity/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Adult , Humans , Spectroscopy, Near-Infrared
7.
J Exp Psychol Appl ; 22(3): 331-49, 2016 09.
Article in English | MEDLINE | ID: mdl-27505048

ABSTRACT

We interact daily with computers that appear and behave like humans. Some researchers propose that people apply the same social norms to computers as they do to humans, suggesting that social psychological knowledge can be applied to our interactions with computers. In contrast, theories of human­automation interaction postulate that humans respond to machines in unique and specific ways. We believe that anthropomorphism­the degree to which an agent exhibits human characteristics­is the critical variable that may resolve this apparent contradiction across the formation, violation, and repair stages of trust. Three experiments were designed to examine these opposing viewpoints by varying the appearance and behavior of automated agents. Participants received advice that deteriorated gradually in reliability from a computer, avatar, or human agent. Our results showed (a) that anthropomorphic agents were associated with greater trust resilience, a higher resistance to breakdowns in trust; (b) that these effects were magnified by greater uncertainty; and c) that incorporating human-like trust repair behavior largely erased differences between the agents. Automation anthropomorphism is therefore a critical variable that should be carefully incorporated into any general theory of human­agent trust as well as novel automation design.


Subject(s)
Artificial Intelligence , Cognition , Trust , User-Computer Interface , Adolescent , Adult , Automation , Computers , Female , Humans , Male , Young Adult
8.
Front Hum Neurosci ; 10: 216, 2016.
Article in English | MEDLINE | ID: mdl-27242480

ABSTRACT

Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.

9.
J Exp Psychol Learn Mem Cogn ; 42(9): 1480-8, 2016 09.
Article in English | MEDLINE | ID: mdl-26882286

ABSTRACT

Previous research has shown that there is a time cost (i.e., a resumption lag) associated with resuming a task following an interruption and that the longer the duration of the interruption, the greater the time cost (i.e., resumption lag increases as interruption duration increases). The memory-for-goals model (Altmann & Trafton, 2002) suggests that this greater time cost is a result of increased interference caused by longer duration interruptions. Therefore, the goal for this research was to determine whether individuals who can better manage interference, i.e., individuals with higher working-memory capacity (WMC), can resume tasks more quickly following interruptions than those who cannot manage interference as well (i.e., individuals with lower WMC). A procedural interruption task with 3 different interruption durations and a measure of WMC were completed by 229 students. In line with previous research, we found a strong positive relationship between interruption duration and resumption lag. We found a strong negative effect of WMC on resumption lag (i.e., increases in WMC reduced resumption lags). Notably, WMC moderated the effect of interruption duration on resumption lag (i.e., increases in WMC attenuated the positive relationship between interruption duration and resumption lag). Specifically, individuals with high WMC experienced small increases in resumption lag as interruption duration increased, whereas individuals with low WMC experienced substantial increases in resumption lag as interruption duration increased. Our data suggest that individuals with higher WMC are less susceptible to interference caused by interruptions. (PsycINFO Database Record


Subject(s)
Attention/physiology , Individuality , Memory, Short-Term/physiology , Analysis of Variance , Female , Humans , Male , Models, Statistical , Psychomotor Performance/physiology , Reaction Time/physiology , Time Factors , Young Adult
10.
Front Syst Neurosci ; 9: 27, 2015.
Article in English | MEDLINE | ID: mdl-25805976

ABSTRACT

Contemporary studies with transcranial direct current stimulation (tDCS) provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS) systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

11.
Front Hum Neurosci ; 8: 665, 2014.
Article in English | MEDLINE | ID: mdl-25249958

ABSTRACT

There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation-specifically transcranial Direct Current Stimulation (tDCS)-has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.

12.
Hum Factors ; 56(3): 463-75, 2014 May.
Article in English | MEDLINE | ID: mdl-24930169

ABSTRACT

OBJECTIVE: Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. BACKGROUND: Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. METHOD: Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. RESULTS: Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. CONCLUSION: Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. APPLICATION: An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.


Subject(s)
Aviation , Communication , Man-Machine Systems , Memory, Short-Term , Task Performance and Analysis , Adult , Automation , Decision Support Techniques , Female , Group Processes , Humans , Male , Text Messaging , User-Computer Interface , Young Adult
13.
Neuroimage ; 85 Pt 3: 1014-26, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23727530

ABSTRACT

To better understand the mechanisms by which working memory training can augment human performance we continuously monitored trainees with near infrared spectroscopy (NIRS) while they performed a dual verbal-spatial working memory task. Linear mixed effects models were used to model the changes in cerebral hemodynamic response as a result of time spent training working memory. Nonlinear increases in left dorsolateral prefrontal cortex (DLPFC) and right ventrolateral prefrontal cortex (VLPFC) were observed with increased exposure to working memory training. Adaptive and yoked training groups also showed differential effects in rostral prefrontal cortex with increased exposure to working memory training. There was also a significant negative relationship between verbal working memory performance and bilateral VLPFC activation. These results are interpreted in terms of decreased proactive interference, increased neural efficiency, reduced mental workload for stimulus processing, and increased working memory capacity with training.


Subject(s)
Biomedical Enhancement/methods , Brain/physiology , Learning/physiology , Memory, Short-Term/physiology , Task Performance and Analysis , Brain/blood supply , Hemodynamics/physiology , Humans
14.
Front Hum Neurosci ; 7: 871, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24385959

ABSTRACT

Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable optical neuroimaging method that can be used to assess brain dynamics during skill acquisition and performance of complex work and everyday tasks. In this paper we describe neuroergonomic studies that illustrate the use of fNIRS in the examination of training-related brain dynamics and human performance assessment. We describe results of studies investigating cognitive workload in air traffic controllers, acquisition of dual verbal-spatial working memory skill, and development of expertise in piloting unmanned vehicles. These studies used conventional fNIRS devices in which the participants were tethered to the device while seated at a workstation. Consistent with the aims of mobile brain imaging (MoBI), we also describe a compact and battery-operated wireless fNIRS system that performs with similar accuracy as other established fNIRS devices. Our results indicate that both wired and wireless fNIRS systems allow for the examination of brain function in naturalistic settings, and thus are suitable for reliable human performance monitoring and training assessment.

15.
Psychol Sci ; 22(9): 1212-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21852450

ABSTRACT

The visual system is an efficient statistician, extracting statistical summaries over sets of objects (statistical summary perception) and statistical regularities among individual objects (statistical learning). Although these two kinds of statistical processing have been studied extensively in isolation, their relationship is not yet understood. We first examined how statistical summary perception influences statistical learning by manipulating the task that participants performed over sets of objects containing statistical regularities (Experiment 1). Participants who performed a summary task showed no statistical learning of the regularities, whereas those who performed control tasks showed robust learning. We then examined how statistical learning influences statistical summary perception by manipulating whether the sets being summarized contained regularities (Experiment 2) and whether such regularities had already been learned (Experiment 3). The accuracy of summary judgments improved when regularities were removed and when learning had occurred in advance. In sum, calculating summary statistics impeded statistical learning, and extracting statistical regularities impeded statistical summary perception. This mutual interference suggests that statistical summary perception and statistical learning are fundamentally related.


Subject(s)
Learning , Perception , Statistics as Topic/education , Comprehension , Female , Humans , Judgment , Male , Recognition, Psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...