Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(2008): 20230889, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37817603

ABSTRACT

Weevils are an unusually species-rich group of phytophagous insects for which there is increasing evidence of frequent involvement in brood-site pollination. This study examines phylogenetic patterns in the emergence of brood-site pollination mutualism among one of the most speciose beetle groups, the flower weevils (subfamily Curculioninae). We analysed a novel phylogenomic dataset consisting of 214 nuclear loci for 202 weevil species, with a sampling that mainly includes flower weevils as well as representatives of all major lineages of true weevils (Curculionidae). Our phylogenomic analyses establish a uniquely comprehensive phylogenetic framework for Curculioninae and provide new insights into the relationships among lineages of true weevils. Based on this phylogeny, statistical reconstruction of ancestral character states revealed at least 10 independent origins of brood-site pollination in higher weevils through transitions from ancestral associations with reproductive structures in the larval stage. Broadly, our results illuminate the unexpected frequency with which true weevils-typically specialized phytophages and hence antagonists of plants-have evolved mutualistic interactions of ecological significance that are key to both weevil and plant evolutionary fitness and thus a component of their deeply intertwined macroevolutionary success.


Subject(s)
Weevils , Animals , Weevils/genetics , Pollination , Phylogeny , Symbiosis , Plants , Flowers
2.
Insect Mol Biol ; 29(1): 77-91, 2020 02.
Article in English | MEDLINE | ID: mdl-31381201

ABSTRACT

The insect odorant receptors (ORs) are amongst the largest gene families in insect genomes and the primary means by which insects recognize volatile compounds. The evolution of ORs is thus instrumental in explaining the chemical ecology of insects and as a model of evolutionary biology. However, although ORs have been described from numerous insect species, their analysis within and amongst the insect orders has been hindered by a combination of limited genomic information and a tendency of the OR family toward rapid divergence, gain, and loss. We addressed these issues in the insect order Coleoptera through a targeted genomic annotation effort that included 1181 ORs from one species of the sister order Strepsiptera and 10 species representing the four coleopteran suborders. The numbers of ORs in each species varied from hundreds to fewer than 10, but coleopteran ORs could nevertheless be represented within a scheme of nine monophyletic subfamilies. We observed many radiations and losses of genes amongst OR subfamilies, and the diversity of ORs appeared to parallel the host breadth of the study species. However, some small lineages of ORs persisted amongst many coleopteran families, suggesting receptors of key function that underlie the olfactory ecology of beetles.


Subject(s)
Coleoptera/genetics , Receptors, Odorant/genetics , Animals , Coleoptera/classification , Evolution, Molecular , Genome, Insect , Phylogeny
3.
Science ; 349(6247): 487, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228138

ABSTRACT

Tong et al. comment on the accuracy of the dating analysis presented in our work on the phylogeny of insects and provide a reanalysis of our data. They replace log-normal priors with uniform priors and add a "roachoid" fossil as a calibration point. Although the reanalysis provides an interesting alternative viewpoint, we maintain that our choices were appropriate.


Subject(s)
Insect Proteins/classification , Insecta/classification , Phylogeny , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...