Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Fluoresc ; 25(6): 1801-12, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26429345

ABSTRACT

The rate equations found in frequency domain fluorescence spectroscopy are the same as those found in electronics under analog filter theory. Laplace transform methods are a natural way to solve the equations, and the methods can provide solutions for arbitrary excitation functions. The fluorescence terms can be modelled as circuit components and cascaded with drive and detection electronics to produce a global transfer function. Electronics design tools such as SPICE can be used to model fluorescence problems. In applications, such as remote sensing, where detection electronics are operated at high gain and limited bandwidth, a global modelling of the entire system is important, since the filter terms of the drive and detection electronics affect the measured response of the fluorescence signals. The techniques described here can be used to separate signals from fast and slow fluorophores emitting into the same spectral band, and data collection can be greatly accelerated by means of a frequency comb driver waveform and appropriate signal processing of the response. The simplification of the analysis mathematics, and the ability to model the entire detection chain, make it possible to develop more compact instruments for remote sensing applications.

2.
Rev Sci Instrum ; 83(10): 10D719, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126893

ABSTRACT

Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

3.
Toxicol Lett ; 123(2-3): 151-8, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11641043

ABSTRACT

Mice heterozygous for deletion of the transforming growth factor beta1 (TGF-beta1) gene show an enhanced rate of lung tumorigenesis following carcinogen treatment. Since the growth inhibitory activity of TGF-beta1 in epithelial cells is associated with K-ras p21, and K-ras mutations commonly occur in chemically-induced mouse lung tumors, we postulated that tumors in heterozygous TGF-beta1 mice might be more likely to have K-ras mutations compared with tumors in wildtype TGF-beta1 mice. Urethane-induced lung tumors in AJBL6 TGF-beta1 +/- and +/+ mice were examined for K-ras mutations by polymerase chain reaction/single strand conformation polymorphism analysis and sequencing. Mutation frequencies were similar in both genotypes: 12/18 +/- tumors (67%) and 10/16 +/+ tumors (62%). Mutations occurred in 80% +/- and 75% +/+ carcinomas, but in only 50% of the adenomas of both TGF-beta1 genotypes. Codon 61 A-->G transition mutations were predominant, occurring in 61% +/- and 44% +/+ tumors. Three +/- (17%) and three +/+ (19%) tumors showed codon 12 mutations, mostly G-->A transitions. Two +/- tumors had both codon 61 and codon 12 mutations. Interestingly, carcinomas with mutations in codon 61 were larger than those with codon 12 changes. It appears that the mechanism of enhanced susceptibility of TGF-beta1+/- mice to urethane-induced lung carcinogenesis does not involve selective development of tumors with K-ras mutations.


Subject(s)
Genes, ras/genetics , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Transforming Growth Factor beta/genetics , Adenoma/chemically induced , Adenoma/genetics , Animals , Carcinogenicity Tests , Carcinogens/administration & dosage , Carcinoma/chemically induced , Carcinoma/genetics , Crosses, Genetic , DNA Mutational Analysis , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Female , Genes, ras/drug effects , Genotype , Heterozygote , Lung Neoplasms/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mutagenicity Tests , Mutation , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Transforming Growth Factor beta/deficiency , Transforming Growth Factor beta1 , Urethane/administration & dosage
4.
Mutat Res ; 490(1): 57-65, 2001 Jan 25.
Article in English | MEDLINE | ID: mdl-11152972

ABSTRACT

Preconceptional exposure of male NIH Swiss mice to chromium(III) chloride resulted in increased incidence of neoplastic and non-neoplastic changes in their progeny, including lung tumors in females [Toxicol. Appl. Pharmacol. 158 (1999) 161-176]. Since mutations in the K-ras protooncogene are frequent, early changes in mouse lung tumors, we investigated possible mutational activation of this gene as a mechanism for preconceptional carcinogenesis by chromium(III). These offspring had lived until natural death at advanced ages (average 816+/-175 days for controls, 904+/-164 for progeny of chromium-treated fathers). Mutations of K-ras, analyzed by single-strand conformation polymorphism and sequencing, were, in codon 12, wild type GGT (glycine), to GAT (aspartic acid); to GTT (valine); and to CGT (arginine); and in codon 61, wild-type CAA (glutamine), to CGA (arginine). K-ras mutation frequencies in lung tumors were very similar in control progeny (4/14) and in progeny of chromium-treated fathers (5/15). Thus, germline mutation or tendency to spontaneous mutation in K-ras does not seem to be part of the mechanism of preconceptional carcinogenesis here. However, an additional interesting observation was that K-ras mutations were much more frequent in lung carcinomas (8/16) than in adenomas (1/13) (P=0.02), for all progeny combined. This was not related to age of the tumor-bearing mice or the size of the tumors. K-ras mutations may contribute to malignant tumor progression during aging, of possible relevance to the putative association of such mutations with poor prognosis of human lung adenocarcinomas.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Chromium/toxicity , Genes, ras , Lung Neoplasms/genetics , Point Mutation , Adenoma/chemically induced , Age Factors , Animals , Carcinoma/chemically induced , Female , Lung Neoplasms/chemically induced , Male , Mice , Paternal Exposure
5.
Toxicol Appl Pharmacol ; 153(2): 169-78, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9878588

ABSTRACT

Chronic exposure to inhaled cadmium (Cd) has been shown to induce lung tumors in rats (Wistar strain) but not in mice (NMRI strain). The protein metallothionein (MT) plays an important role in Cd detoxification, and it has been suggested that differential inducibility of pulmonary MT may lead to interspecies susceptibility differences to inhaled Cd. Interstrain differences in the pulmonary response of the MT gene to Cd stimuli have not been examined in rats or mice. We compared pulmonary MT expression in Wistar Furth (WF) rats with that in DBA and C57 mice, following a single 3-h exposure to CdO fumes containing 1 mg Cd/m3. Induction of the MT gene was assessed by the levels of MT-I and MT-II transcripts, MT-protein content, and number of MT-labeled alveolar and bronchiolar epithelial cells immediately after Cd exposure and 1, 3, and 5 days later. Control animals were exposed to air/argon furnace gases. We observed differential intra- and interspecies inducibility of the MT gene in the lung following Cd inhalation. DBA mice exhibited greater levels of MT-mRNA, mainly for the MT-I isoform, MT-protein content, and number of MT positive cells relative to C57 mice. WF rats showed lower transcription and translation responses of the MT gene upon Cd stimuli than C57 mice. The present results, in concert with our previous findings of higher lung cell proliferation in Cd-exposed C57 relative to DBA mice, predict greater susceptibility of C57 to the carcinogenic effects of inhaled Cd. Furthermore, the low transcriptional and translation responses of the MT gene to Cd stimuli in WF rats might explain the higher susceptibility of this rat strain to develop malignant lung tumors after chronic exposure to Cd via inhalation. Parallel to our findings in mice, differences in the responsiveness of lung MT gene may exist across rat strains. Thus intraspecies genetic variability in pulmonary MT may influence the susceptibility of rats or mice to lung carcinogenesis induced by inhalation of Cd compounds.


Subject(s)
Cadmium Compounds/pharmacology , Lung/metabolism , Metallothionein/metabolism , Administration, Inhalation , Animals , Gene Expression/genetics , Immunohistochemistry , Male , Metallothionein/classification , Metallothionein/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Molecular Sequence Data , RNA, Messenger/analysis , Rats , Rats, Inbred WF , Species Specificity , Time Factors
6.
Toxicol Appl Pharmacol ; 146(2): 196-206, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9344887

ABSTRACT

Inhalation of cadmium oxide (CdO) is a significant form of human exposure to cadmium (Cd). Furthermore, there is epidemiological and experimental data relating Cd inhalation with lung cancer. Animal studies indicate that rats are more susceptible to Cd-induced lung cancer than mice, but interstrain sensitivity differences to Cd-induced pulmonary inflammation or carcinogenesis have not been addressed in either species. We compared pulmonary inflammatory processes in Wistar Furth (WF) rats with those in C57 and DBA mice exposed to freshly generated CdO fumes in nose-only inhalation chambers. Animals were exposed to 1 mg Cd/m3 for 3 hr and terminated immediately or 1, 3, and 5 days after exposure. Control animals were exposed to air/argon furnace gases. Cd-induced lung injury was assessed by bronchoalveolar lavage fluid (BALF) analyses, histopathology, and immunohistochemical detection of cell proliferation. Inhalation of CdO resulted in pulmonary inflammatory processes that varied widely across species and strains. C57 mice responded with faster and greater influx of neutrophils and proliferation of alveolar macrophages, type II epithelial cells, and bronchiolar epithelial cells compared to DBA mice or WF rats. DBA mice retained a greater percentage of inhaled Cd in the lungs and presented higher levels of BALF protein than C57 mice or rats. In comparison to mice, WF rats responded with a more transient inflammatory response in BALF parameters and higher degree of acute inflammation in lung tissue. The more pronounced proliferation of alveolar and bronchiolar epithelial cells observed in C57 mice might indicate higher susceptibility of this mice strain to Cd-induced lung carcinogenesis compared to DBA mice or WF rats. Furthermore, the present results of fewer inflammatory cells and lower proliferation of epithelial cells in DBA mice in association with our previous observation of higher Cd-induced metallothionein protein in this strain suggest that DBA might be less susceptible to the pulmonary carcinogenic effects of inhaled Cd than C57 mice or WF rats. We conclude that mice might not necessarily be more resistant than rats to the carcinogenic effects of inhaled Cd, since intraspecies susceptibility differences are strongly suggested by the present data. An extrapolation of this conclusion is that genetic variations in the human population may determine individual sensitivity differences to inhaled Cd.


Subject(s)
Bronchi/drug effects , Bronchoalveolar Lavage Fluid/chemistry , Cadmium Compounds/toxicity , Cadmium/analysis , Lung/drug effects , Oxides/toxicity , Administration, Inhalation , Animals , Bronchi/pathology , Bronchoalveolar Lavage Fluid/cytology , Cadmium Compounds/administration & dosage , Cell Division/drug effects , Epithelial Cells/drug effects , Immunohistochemistry , Lung/metabolism , Lung/pathology , Macrophages, Alveolar/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Neutrophils/drug effects , Oxides/administration & dosage , Proliferating Cell Nuclear Antigen/analysis , Rats , Rats, Wistar , Species Specificity
7.
Toxicology ; 107(2): 121-30, 1996 Feb 22.
Article in English | MEDLINE | ID: mdl-8599171

ABSTRACT

The rodent testes are generally more susceptible to cadmium (Cd)-induced toxicity than the liver. Cd induces predominantly testicular interstitial cell (TIC) tumors. In order to clarify the molecular mechanism underlying tissue differences in Cd sensitivity, we compared Cd-induced metallothionein (MT) gene expression, MT protein accumulation, and Cd retention in freshly isolated TICs and liver. Adult male Fischer rats received a s.c. injection of 4.0 micromol Cd/kg or vehicle and 24 h later tissues were sampled and TICs isolated. MT-I and MT-II mRNA levels were determined by slot-blot analysis followed by densitometry scanning, and MT was estimated by the Cd-heme method. Testicular lesions were not grossly or histologically observed in rats treated with 4 micromol Cd/kg. Both MT mRNA and MT (as determined by Cd-binding capacity) were constitutively present in TICs as well as the liver. TICs isolated from Cd-treated rats accumulated more Cd (4-fold), and had higher levels of MT-I (1.9-fold) and MT-II (1.4-fold) mRNAs over control, but contained less MT (30% decrease) than TICs isolated from control animals. Cd exposure substantially increased hepatic Cd content (6000-fold), MT (58-fold), and MT-I mRNA (5.3-fold), but did not increase MT-II mRNA. Thus, our findings indicate that, although low-dose Cd exposure results in increases of MT mRNA in TICs it does not enhance MT synthesis within these cells. The inability to induce the metal-detoxicating MT-protein, in response to Cd, might account for higher susceptibility of testes to Cd toxicity and carcinogenesis relative to liver.


Subject(s)
Cadmium/toxicity , Gene Expression/drug effects , Leydig Cells/drug effects , Liver/drug effects , Metallothionein/genetics , Animals , Base Sequence , Cadmium/administration & dosage , Cadmium/analysis , Cadmium/metabolism , Injections, Subcutaneous , Leydig Cells/chemistry , Leydig Cells/metabolism , Liver/chemistry , Liver/metabolism , Male , Metallothionein/biosynthesis , Molecular Sequence Data , Oligonucleotide Probes , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred F344 , Time Factors
8.
Biol Trace Elem Res ; 48(1): 13-29, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7626369

ABSTRACT

Vegetable food contributes a higher amount of daily cadmium (Cd) intake in humans than food of animal origin. The bioavailability of plant Cd depends on the content of plant zinc (Zn). The mechanism by which increased plant Zn lowers the intestinal absorption of plant Cd could be mediated by changes in the chemical speciation of Cd or Zn in plant edible tissues, including Zn-induced phytochelatin synthesis. To test this hypothesis we investigated the chemical speciation of Cd and Zn in leaf extracts of lettuce grown under 10 microM of Cd accompanied by 0.32 or 31.6 microM Zn in nutrient solution. Gel filtration chromatography of the low- or high-Zn leaf extracts yielded a major low molecular weight Cd-Zn complex that eluted at similar elution volume. Compared to low-Zn leaf extracts, high-Zn leaf extracts contained a higher proportion of Zn incorporated into high molecular weight components, and higher content of the amino acids Cys, Gly, Gly, and Asp in the low molecular weight Cd-Zn complex. The peptides isolated by high performance liquid chromatography (HPLC) of the Cd-Zn complex from the low- or high-Zn leaf extracts did not have an amino acid composition identical to phytochelatins. We concluded that 1. Sequestration of Cd or Zn via phytochelatin does not occur in leaves of lettuce containing levels of those metals representatives of Zn-Cd or Cd-only contaminated crops; and 2. Higher Cys, Glu, Gly, and Asp content in high-Zn than low-Zn leaves could lower Cd absorption in animals fed high-Zn crop diets, by enhancing metallothionein synthesis or changing Cd or Zn speciation in the animal gut.


Subject(s)
Cadmium/metabolism , Lactuca/metabolism , Zinc/metabolism , Amino Acids/analysis , Amino Acids/metabolism , Biological Availability , Cadmium/analysis , Chromatography, High Pressure Liquid , Cysteine/metabolism , Glutathione , Intestinal Absorption , Lactuca/growth & development , Metalloproteins/biosynthesis , Molecular Weight , Peptides/metabolism , Phytochelatins , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Zinc/analysis
9.
Environ Pollut ; 79(2): 113-20, 1993.
Article in English | MEDLINE | ID: mdl-15091895

ABSTRACT

The interactions between Zn and Cd on the concentration and tissue distribution of these metals in lettuce and spinach were studied at levels corresponding to background and Zn-Cd contaminated sites. Plants were grown in nutrient solutions containing 0.398-8.91 microM Zn and 0.010-0.316 microM Cd. Cadmium accumulated more in old than in young leaves of both crops at any solution Cd level, whereas Zn followed that pattern only at Zn levels > or = 3.16 microM. Increasing solution Cd increased Zn concentrations in young leaves of lettuce but not of spinach, regardless of Zn levels. Cadmium concentrations in young leaves of both crops decreased exponentially with increasing solution Zn at low (0.0316 microM) but not at high (0.316 microM) solution Cd. The Zn: Cd concentration ratios in young leaves of lettuce and spinach grown at 0.316 microM Cd became greater as the solution Zn increased. Cadmium and Zn concentrations in young leaves were related more closely to the relative concentrations of Zn and Cd in solution than were the concentrations in old leaves, especially in lettuce. Studies of Zn-Cd interactions and Cd bioavailability should differentiate between basal and upper leaves of lettuce and spinach. Compared to Cd-only pollution, Zn-Cd combined pollution may not decrease Cd concentrations in lettuce and spinach edible tissues, but because it increases their Zn concentrations it lowers plant Cd bioavailability.

10.
Environ Res ; 57(1): 73-87, 1992 Feb.
Article in English | MEDLINE | ID: mdl-1740097

ABSTRACT

Many cadmium-contaminated environments contain high levels of zinc. The effects of plant Zn and plant species on plant Cd bioavailability were tested in Japanese quail fed lettuce and spinach. Four groups of birds received 10% of their diets as lettuce or spinach leaves intrinsically labeled with 109Cd and containing low or high intrinsic Zn. Two other groups were fed control diets containing 109Cd as CdSO4 and low or high Zn as ZnCO3. Cadmium concentrations in diets ranged from 0.857 to 1.05 micrograms/g dry wt. Zinc concentrations in low-Zn diets ranged from 21.2 to 22.8, and in high-Zn diets from 56.0 to 63.3 micrograms/g dry wt. Increased lettuce and spinach Zn decreased plant Cd retention in kidney, liver, and jejunum-ileum of Japanese quail. Spinach Cd was less absorbed than lettuce Cd at both Zn levels. Inorganic Zn produced a lesser decrease in Cd retention in kidney, liver, and jejunum-ileum than did plant Zn. We conclude that (1) crops that transport Zn and Cd readily into edible tissues show lower Cd bioavailability when grown in Zn-Cd contaminated environments than in Cd-only polluted sites, (2) plant species differ in Cd bioavailability for identical concentrations of Zn and Cd in edible tissues, and (3) toxicological studies with animals exposed to Cd salts and Zn supplements do not assess Cd bioavailability of Zn-Cd contaminated crops.


Subject(s)
Cadmium/pharmacokinetics , Food Contamination , Vegetables , Zinc/pharmacology , Absorption/drug effects , Animals , Biological Availability , Cadmium/toxicity , Coturnix , Eating , Female , Intestine, Small/metabolism , Kidney/metabolism , Liver/metabolism , Male , Organ Size , Tissue Distribution , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...