Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Zool ; 7(1): 13, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-37170145

ABSTRACT

BACKGROUND: The Egyptian spiny mouse (Acomys cahirinus) is the only known rodent to exhibit true, human-like menstruation and postpartum ovulation, and is an important new model for reproductive studies. Spiny mice do not produce a visible copulatory plug, and calculation of gestational age is therefore restricted by the need to use mated postpartum dams. The current inefficient method of monitoring until parturition to provide a subsequent estimate of gestational age increases study duration and costs. This study addressed this issue by comparing the mating behaviour of spiny mice across the menstrual cycle and proposes a more accurate method for staging and pairing animals that provides reliable estimates of gestational age. In experiment 1, mating behaviour was recorded overnight to collect data on mounting, intromission, and ejaculation (n = 5 pairs per stage) in spiny mice paired at menses and at early and late follicular and luteal phases of the menstrual cycle. In experiment 2, female spiny mice were paired at the follicular or luteal phases of the menstrual cycle to determine any effect on the pairing-birth interval (n = 10 pairs). RESULTS: We report a broad mating window of ~ 3 days during the follicular phase and early luteal phase of spiny mice. Males displayed a discrete 'foot twitch' behaviour during intromission and a brief copulatory lock during ejaculation. Litters were delivered after 40-43 days if pairing occurred during the mating window, compared with 46-48 days for spiny mice paired in the late luteal phase. When pairing occurred during the late luteal phase or menses no mating activity was observed during the recording period. CONCLUSION: This study clearly demonstrates an effect of the menstrual cycle on mating behaviour and pregnancy in the spiny mouse and provides a reliable and more effective protocol for estimating gestational age without the need for postpartum dams.

2.
Sci Rep ; 11(1): 5344, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674629

ABSTRACT

Egyptian spiny mice are the only known species to have human-like menstruation and a postpartum ovulation. Unfortunately, no endocrine or morphological evidence has been provided for a postpartum ovulation in spiny mice, and while later stages of pregnancy have been well studied, early events including embryo implantation and spiral artery remodelling have not been reported. This study compared the sex steroid endocrinology and reproductive tract morphology of dams at eight timepoints (n = 40) postpartum to determine the timing of ovulation and the timing and invasiveness of embryo implantation in A. cahirinus. Reproductive tracts were fixed and stained for histology and immunohistochemistry, and plasma was prepared for enzyme-linked immunosorbent assay. Ovarian histology and estradiol-17B concentrations indicate ovulation within 48 h of parturition and then immediate resumption of follicular growth. Uterine histology and immunohistochemistry revealed progressive epithelial repair, endometrial growth and spiral artery assembly and remodelling in dams postpartum. Blastocysts were seen in the uterine lumen at day 4-5 postpartum and embryos had implanted superficially with minimal stromal invasion by day 5-6. This study provides further evidence for the unique, humanesque reproductive biology of spiny mice and for a postpartum ovulation using endocrine and morphological changes observed during early pregnancy. Taken together, our data suggest that spiny mice may act as appropriate models of human pregnancy disorders such as implantation failure or pre-eclampsia.


Subject(s)
Disease Models, Animal , Menstruation , Murinae/psychology , Ovulation , Pre-Eclampsia/pathology , Animals , Female , Postpartum Period , Pregnancy
3.
Front Reprod Health ; 3: 784578, 2021.
Article in English | MEDLINE | ID: mdl-36303981

ABSTRACT

Menstruation, the cyclical breakdown of the uterine lining, is arguably one of evolution's most mysterious reproductive strategies. The complexity and rarity of menstruation within the animal kingdom is undoubtedly a leading contributor to our current lack of understanding about menstrual function and disorders. In particular, the molecular and environmental mechanisms that drive menstrual and fertility dysregulation remain ambiguous, owing to the restricted opportunities to study menstruation and model menstrual disorders in species outside the primates. The recent discovery of naturally occurring menstruation in the Egyptian spiny mouse (Acomys cahirinus) offers a new laboratory model with significant benefits for prospective research in women's health. This review summarises current knowledge of spiny mouse menstruation, with an emphasis on spiral artery formation, inflammation and endocrinology. We offer a new perspective on cycle variation in menstrual bleeding between individual animals, and propose that this is indicative of fertility success. We discuss how we can harness our knowledge of the unique physiology of the spiny mouse to better understand vascular remodelling and its implications for successful implantation, placentation, and foetal development. Our research suggests that the spiny mouse has the potential as a translational research model to bridge the gap between bench to bedside and provide improved reproductive health outcomes for women.

4.
PLoS One ; 15(12): e0244411, 2020.
Article in English | MEDLINE | ID: mdl-33370773

ABSTRACT

The Egyptian or Common spiny mouse (A. cahirinus) is the first rodent species to show human-like menstruation and spontaneous decidualisation. We consider from these, and its other, human-like characteristics that this species will be a more useful and appropriate small animal model for human reproductive studies. Based on this, there is a need to develop specific laboratory-based assisted reproduction protocols including superovulation, in-vitro fertilisation, embryo cryopreservation and transfer to expand and make this model more relevant. Because standard rodent superovulation has not been successful in the spiny mouse, we have selected to test a human protocol. Female spiny mice will receive a subcutaneous GnRH agonist implant and be allowed to recover. Menstrual cycle lengths will then be allowed to stabilize prior to ovarian stimulation. After recovery, females will be injected IP once a day for 4 days with a FSH analogue, to induce follicular growth, and on day 5 will be injected IP with a hCG analogue to trigger ovulation. Females will either be culled 36hrs after trigger to collect oocytes or immediately paired with a stud male and two cell embryos collected 48hrs later. Mature oocytes will be inseminated using fresh spiny mouse spermatozoa and all in-vitro grown and in-vivo collected two cell embryos will be cryopreserved using methods developed in a close spiny mouse relative, the Mongolian gerbil. For embryo transfer, vitrified embryos will be rapidly warmed and non-surgically transferred to surrogate mice. Surrogates will be monitored until pregnancy is apparent (roughly 30 days) and then left undisturbed until birth, 38-40 days after transfer. By successfully developing robust assisted reproduction protocols in A. cahirinus we will be able to use this rodent as a more effective model for human reproduction.


Subject(s)
Chorionic Gonadotropin/analogs & derivatives , Cryopreservation/methods , Embryo, Mammalian , Follicle Stimulating Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/agonists , Ovulation Induction/methods , Animals , Estrous Cycle , Female , Fertilization in Vitro , Injections, Intraperitoneal , Male , Mice , Models, Animal , Superovulation
5.
Reprod Fertil Dev ; 32(16): 1293-1297, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32943139

ABSTRACT

The menstruating Egyptian spiny mouse has recently been proposed as a new animal model for reproductive health research. Unfortunately, little is known about reproduction in males. This study compared several characteristics of sperm function before and after cryopreservation. Epididymal spermatozoa were cryopreserved in different concentrations of raffinose and skim milk and tested for motility and membrane integrity (Experiment 1). Further evaluations of motility, plasma membrane and acrosome integrity, mitochondrial membrane potential and DNA integrity were conducted with the addition of l-glutamine to the extender (Experiment 2). The results show that, following cryopreservation, motility and membrane integrity were reduced, but were better maintained in the presence of l-glutamine (P<0.05). Moreover, although all sperm parameters were significantly reduced following cryopreservation (P<0.05), most cryopreserved spermatozoa retained acrosome, membrane and DNA integrity while also maintaining motility and mitochondrial membrane potential. This study provides a new step towards the development of assisted reproductive techniques and archiving the important genetics of the world's only known menstruating rodent.


Subject(s)
Cryopreservation/veterinary , Semen Preservation/veterinary , Spermatozoa/cytology , Animals , Cryoprotective Agents , Male , Membrane Potential, Mitochondrial/physiology , Murinae , Semen Analysis , Sperm Motility/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...