Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 18(7)2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28677627

ABSTRACT

Birch pollen allergy is highly prevalent, with up to 100 million reported cases worldwide. Proteases in such allergen sources have been suggested to contribute to primary sensitisation and exacerbation of allergic disorders. Until now the protease content of Betula verrucosa, a birch species endemic to the northern hemisphere has not been studied in detail. Hence, we aim to identify and characterise pollen and bacteria-derived proteases found within birch pollen. The pollen transcriptome was constructed via de novo transcriptome sequencing and analysis of the proteome was achieved via mass spectrometry; a cross-comparison of the two databases was then performed. A total of 42 individual proteases were identified at the proteomic level. Further clustering of proteases into their distinct catalytic classes revealed serine, cysteine, aspartic, threonine, and metallo-proteases. Further to this, protease activity of the pollen was quantified using a fluorescently-labelled casein substrate protease assay, as 0.61 ng/mg of pollen. A large number of bacterial strains were isolated from freshly collected birch pollen and zymographic gels with gelatinase and casein, enabled visualisation of proteolytic activity of the pollen and the collected bacterial strains. We report the successful discovery of pollen and bacteria-derived proteases of Betula verrucosa.


Subject(s)
Betula/enzymology , Peptide Hydrolases/analysis , Pollen/enzymology , Allergens/analysis , Allergens/immunology , Betula/genetics , Gene Expression Profiling , Humans , Plant Extracts , Plant Proteins/analysis , Plant Proteins/immunology , Pollen/microbiology , Proteolysis , Proteome , Proteomics/methods , Rhinitis, Allergic, Seasonal/immunology , Transcriptome
2.
Neuroscience ; 333: 13-26, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27393249

ABSTRACT

Paclitaxel is a first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Previous preclinical studies indicate mitochondrial dysfunction and oxidative stress are associated with this disorder; however no direct assessment of reactive oxygen species (ROS) levels and antioxidant enzyme activity in sensory neurons following paclitaxel has been undertaken. As expected, repeated low doses of systemic paclitaxel in rats induced long-lasting pain behaviour with a delayed onset, akin to the clinical scenario. To elucidate the role of ROSinthe development and maintenance ofpaclitaxel-inducedpainful neuropathy, we have assessed ROS and antioxidant enzyme activity levels in the nociceptive system in vivo at three key behavioural time-points; prior to pain onset (day 7), peak pain severity and pain resolution. In isolated dorsal root ganglia (DRG) neurons, ROS levels were unchanged following paclitaxel-exposure in vitro or in vivo. ROS levels were further assessed in DRG and spinal cord in vivo following intrathecal MitoTracker®RedCM-H2XRos administration in paclitaxel-/vehicle-treated rats. ROS levels were increased at day 7, specifically in non-peptidergic DRG neurons. In the spinal cord, neuronally-derived ROS was increased at day 7, yet ROS levels in microglia and astrocytes were unaltered. In DRG, CuZnSOD and glutathione peroxidase (GPx) activity were increased at day 7 and peak pain time-points, respectively. In peripheral sensory nerves, CuZnSOD activity was increased at day 7, and at peak pain, MnSOD, CuZnSOD and GPx activity were increased. Catalase activity was unaltered in DRG and saphenous nerves. These data suggest that neuronally-derived mitochondrial ROS, accompanied with an inadequate endogenous antioxidant enzyme response, are contributory factors in paclitaxel-induced painful neuropathy.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Oxidative Stress/drug effects , Paclitaxel/toxicity , Pain/chemically induced , Peripheral Nervous System Diseases/chemically induced , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Disease Models, Animal , Disease Progression , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Lumbar Vertebrae , Male , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/physiology , Pain/metabolism , Peripheral Nervous System Diseases/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism
3.
Pediatr Allergy Immunol ; 27(6): 560-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27129102

ABSTRACT

Panallergens comprise various protein families of plant as well as animal origin and are responsible for wide IgE cross-reactivity between related and unrelated allergenic sources. Such cross-reactivities include reactions between various pollen sources, pollen and plant-derived foods as well as invertebrate-derived inhalants and foodstuff. Here, we provide an overview on the most clinically relevant panallergens from plants (profilins, polcalcins, non-specific lipid transfer proteins, pathogenesis-related protein family 10 members) and on the prominent animal-derived panallergen family, tropomyosins. In addition, we explore the role of panallergens in the sensitization process and progress of the allergic disease. Emphasis is given on epidemiological aspects of panallergen sensitization and clinical manifestations. Finally, the issues related to diagnosis and therapy of patients sensitized to panallergens are outlined, and the use of panallergens as predictors for cross-reactive allergy and as biomarkers for disease severity is discussed.


Subject(s)
Allergens/immunology , Cross Reactions , Hypersensitivity/immunology , Animals , Antigens, Plant/immunology , Biomarkers/metabolism , Food , Humans , Hypersensitivity/diagnosis , Hypersensitivity/epidemiology , Immunoglobulin E/metabolism , Pollen/immunology , Predictive Value of Tests , Tropomyosin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...