Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 26(9): 1312-1318, 2018 09.
Article in English | MEDLINE | ID: mdl-29802319

ABSTRACT

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare inherited heart-muscle disorder, which is the most common cause of life-threatening arrhythmias and sudden cardiac death (SCD) in young adults and athletes. Early and accurate diagnosis can be crucial in effective ARVC management and prevention of SCD.The genome Aggregation Database (gnomAD) population of 138,632 unrelated individuals was searched for previously identified ARVC variants, classified as pathogenic or unknown on the disease genetic variant database ( http://www.arvcdatabase.info/ ), in five most-commonly mutated genes: PKP2, DSP, DSG2, DSC2 and JUP, where variants account for 40-50% of all the ARVC cases. Minor allele frequency (MAF) of 0.001 was used to define variants as rare or common.The gnomAD data contained 117/364 (32%) of the previously reported pathogenic and 152/266 (57%) of the unknown ARVC variants. The cross-ethnic analysis of MAF revealed that 11 previously classified pathogenic and 57 unknown variants were common (MAF ≥ 0.001) in at least one ethnic gnomAD population and therefore unlikely to be ARVC causing.After applying our MAF analysis the overall frequency of pathogenic ARVC variants in gnomAD was one in 257 individuals, but a more stringent cut-off (MAF ≥ 0.0001) gave a frequency of one in 845, closer to the estimated phenotypic frequency of the disease.Our study demonstrates that the analysis of large cross-ethnic population sequencing data can significantly improve disease variant interpretation. Higher than expected frequency of ARVC variants suggests that a proportion of ARVC-causing variants may be inaccurately classified, implying reduced penetrance of some variants, and/or a polygenic aetiology of ARVC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/genetics , Gene Frequency , Arrhythmogenic Right Ventricular Dysplasia/pathology , Desmoglein 2/genetics , Desmoplakins/genetics , Genome-Wide Association Study , Humans , Plakophilins/genetics , gamma Catenin/genetics
2.
Biochem Res Int ; 2012: 685108, 2012.
Article in English | MEDLINE | ID: mdl-22957257

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is caused by mutations in genes encoding sarcomere proteins. Mutations in MYL3, encoding the essential light chain of myosin, are rare and have been associated with sudden death. Both recessive and dominant patterns of inheritance have been suggested. We studied a large family with a 38-year-old asymptomatic HCM-affected male referred because of a murmur. The patient had HCM with left ventricular hypertrophy (max WT 21 mm), a resting left ventricular outflow gradient of 36 mm Hg, and left atrial dilation (54 mm). Genotyping revealed heterozygosity for a novel missense mutation, p.V79I, in MYL3. The mutation was not found in 300 controls, and the patient had no mutations in 10 sarcomere genes. Cascade screening revealed a further nine heterozygote mutation carriers, three of whom had ECG and/or echocardiographic abnormalities but did not fulfil diagnostic criteria for HCM. The penetrance, if we consider this borderline HCM the phenotype of the p.V79I mutation, was 40%, but the mean age of the nonpenetrant mutation carriers is 15, while the mean age of the penetrant mutation carriers is 47. The mutation affects a conserved valine replacing it with a larger isoleucine residue in the region of contact between the light chain and the myosin lever arm. In conclusion, MYL3 mutations can present with low expressivity and late onset.

3.
Heart Rhythm ; 2(11): 1238-49, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16253915

ABSTRACT

BACKGROUND: Long QT syndrome (LQTS) is a cardiovascular disorder characterized by prolonged QTc time, syncope, or sudden death caused by torsades de pointes and ventricular fibrillation. We investigated the clinical and electrophysiologic phenotype of individual mutations and the compound mutations in a family in which different genotypes could be found. OBJECTIVES: The purpose of this study was to determine the impact of genotype-based diagnostic assessment in LQTS. METHODS: We used cascade screening and functional analyses to investigate the phenotype in a family with LQTS. The contributions of the compound mutations in the KCNQ1 and KCNH2 genes (KCNQ1 R591H, KCNH2 R328C) were analyzed by heterologous expression in Xenopus laevis oocytes using two-electrode voltage clamp and by confocal imaging. RESULTS: KCNH2 R328C did not show any functional phenotype whereas KCNQ1 R591H resulted in severe reduction of current. Neither wild-type nor mutant channels affected each other functionally in coexpression experiments. Therefore, a direct interaction between KCNQ1 and KCNH2 was ruled out under these conditions. CONCLUSION: Assessment of novel mutational findings in LQTS should include accurate genetic and functional analysis. Notably, appropriate studies are needed if two or more mutations in different genes are present in one proband. Our findings prompt reconsideration of the impact of compound mutations in LQTS families and reinforce the need for thorough functional evaluation of novel ion channel mutations before assignment of pathogenic status.


Subject(s)
DNA/genetics , Ether-A-Go-Go Potassium Channels/genetics , KCNQ1 Potassium Channel/genetics , Long QT Syndrome/genetics , Mutation, Missense , Alleles , ERG1 Potassium Channel , Electrophysiology , Ether-A-Go-Go Potassium Channels/metabolism , Female , Genetic Predisposition to Disease , Genotype , Heart Rate/physiology , Humans , KCNQ1 Potassium Channel/metabolism , Long QT Syndrome/metabolism , Long QT Syndrome/physiopathology , Male , Middle Aged , Pedigree , Phenotype , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...