Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22013488

ABSTRACT

The sea cucumber Holothuria forskåli possesses a specialized system called Cuvierian tubules. During mechanical stimulation white filaments (tubules) are expelled and become sticky upon contact with any object. We isolated a protein with adhesive properties from protein extracts of Cuvierian tubules from H. forskåli. This protein was identified by antibodies against recombinant precollagen D which is located in the byssal threads of the mussel Mytilus galloprovincialis. To find out the optimal procedure for extraction and purification, the identified protein was isolated by several methods, including electroelution, binding to glass beads, immunoprecipitation, and gel filtration. Antibodies raised against the isolated protein were used for localization of the adhesive protein in Cuvierian tubules. Immunostaining and immunogold electron microscopical studies revealed the strongest immunoreactivity in the mesothelium; this tissue layer is involved in adhesion. Adhesion of Cuvierian tubule extracts was measured on the surface of various materials. The extracted protein showed the strongest adhesion to Teflon surface. Increased adhesion was observed in the presence of potassium and EDTA, while cadmium caused a decrease in adhesion. Addition of antibodies and trypsin abolished the adhesive properties of the extract.

2.
Comp Biochem Physiol B Biochem Mol Biol ; 139(4): 607-17, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15581793

ABSTRACT

Marine invertebrates produce a large variety of mucus secretions which are rich in glycoproteins. As part of our studies of natural antifouling mechanisms, mucus secretions from the starfish Marthasterias glacialis and Porania pulvillus and the brittlestar Ophiocomina nigra have been used to characterise the structure and function of some of the glycoproteins present in these secretions. Mucus was collected from all three species and fractionated by size exclusion chromatography. A high molecular weight glycoprotein fraction was collected from each species. Monosaccharide analysis and FTIR demonstrated a composition consistent with a mucin-type glycoprotein. The mucin from M. glacialis and O. nigra inhibited in vitro bacterial adhesion in a dose-dependent manner. In contrast, the mucin from P. pulvillus promoted bacterial adhesion in a dose-dependent manner. All of the mucins inhibited the adhesion of human neutrophils to cultured human vascular endothelial cells (HUVECs) and had no anticoagulant activity. The mucins described here have adhesion-regulating functions that may have a role in the antifouling or feeding mechanisms of the organisms that produce them. These mucins may also be of therapeutic value through their ability to regulate human neutrophil adhesion or bacterial adhesion.


Subject(s)
Echinodermata/metabolism , Glycoproteins/metabolism , Mucins/metabolism , Mucus/metabolism , Animals , Cell Adhesion/physiology , Cells, Cultured , Chromatography, Gel , Endothelial Cells/metabolism , Endothelial Cells/physiology , Humans , Neutrophils/metabolism , Neutrophils/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...