Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Physiol ; 14: 1140989, 2023.
Article in English | MEDLINE | ID: mdl-37324378

ABSTRACT

Introduction: There is a great increase in uterine arterial blood flow during normal pregnancy, which is a result of the cardiovascular changes that occur in pregnancy to adapt the maternal vascular system to meet the increased metabolic needs of both the mother and the fetus. The cardiovascular changes include an increase in cardiac output and more importantly, dilation of the maternal uterine arteries. However, the exact mechanism for the vasodilation is not fully known. Piezo1 mechanosensitive channels are highly expressed in endothelial and vascular smooth muscle cells of small-diameter arteries and play a role in structural remodeling. In this study, we hypothesize that the mechanosensitive Piezo1 channel plays a role in the dilation of the uterine artery (UA) during pregnancy. Methods: For this, 14-week-old pseudopregnant and virgin Sprague Dawley rats were used. In isolated segments of UA and mesenteric resistance arteries (MRA) mounted in a wire myograph, we investigated the effects of chemical activation of Piezo1, using Yoda 1. The mechanism of Yoda 1 induced relaxation was assessed by incubating the vessels with either vehicle or some inhibitors or in the presence of a potassium-free physiological salt solution (K+-free PSS). Results: Our results show that concentration-dependent relaxation responses to Yoda 1 are greater in the UA of the pseudo-pregnant rats than in those from the virgin rats while no differences between groups were observed in the MRAs. In both vascular beds, either in virgin or in pseudopregnant, relaxation to Yoda 1 was at least in part nitric oxide dependent. Discussion: Piezo1 channel mediates nitric oxide dependent relaxation, and this channel seems to contribute to the greater dilation that occurs in the uterine arteries of pseudo-pregnant rats.

4.
Front Surg ; 5: 72, 2018.
Article in English | MEDLINE | ID: mdl-30564582

ABSTRACT

Diabetic bladder dysfunction (DBD) is a well-recognized and common symptom affecting up to 50% of all diabetic patients. DBD has a broad range of clinical presentations ranging from overactive to underactive bladder symptoms that develops in middle-aged to elderly patients with long standing and poorly controlled diabetes. Low efficacy of current therapeutics and lifestyle interventions combined with high national healthcare costs highlight the need for more research into bladder dysfunction pathophysiology and novel treatment options. Cellular senescence is an age-related physiologic process in which cells undergo irreversible growth arrest induced by replicative exhaustion and damaging insults. While controlled senescence negatively regulates cell proliferation and promotes tissue regeneration, uncontrolled senescence is known to result in tissue dysfunction through enhanced secretion of inflammatory factors. This review presents previous scientific findings and current hypotheses that characterize diabetic bladder dysfunction. Further, we propose the novel hypothesis that cellular senescence within the urothelial layer of the bladder contributes to the pro-inflammatory/pro-oxidant environment and symptoms of diabetic bladder dysfunction. Our results show increased cellular senescence in the urothelial layer of the bladder; however, whether this phenomenon is the cause or effect of DBD is unknown. The urothelial layer of the bladder is made up of transitional epithelia specialized to contract and expand with demand and plays an active role in transmission by modulating afferent activity. Transition from normal functioning urothelial cells to secretory senescence cells would not only disrupt the barrier function of this layer but may result in altered signaling and sensation of bladder fullness; dysfunction of this layer is known to result in symptoms of frequency and urgency. Future DBD therapeutics may benefit from targeting and preventing early transition of urothelial cells to senescent cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...