Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 16262, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758757

ABSTRACT

Throughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in the number of mesh elements. For instance, quantitative predictions of transport in nanoporous media, critical to hydrocarbon extraction from tight shale formations, are impossible without accounting for molecular-level interactions. Similarly, inertial confinement fusion simulations rely on numerical diffusion to simulate molecular effects such as non-local transport and mixing without truly accounting for molecular interactions. With these two disparate applications in mind, we develop a novel capability which uses an active learning approach to optimize the use of local fine-scale simulations for informing coarse-scale hydrodynamics. Our approach addresses three challenges: forecasting continuum coarse-scale trajectory to speculatively execute new fine-scale molecular dynamics calculations, dynamically updating coarse-scale from fine-scale calculations, and quantifying uncertainty in neural network models.

2.
J Appl Crystallogr ; 56(Pt 4): 1277-1286, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37555231

ABSTRACT

Modern diffraction experiments (e.g. in situ parametric studies) present scientists with many diffraction patterns to analyze. Interactive analyses via graphical user interfaces tend to slow down obtaining quantitative results such as lattice parameters and phase fractions. Furthermore, Rietveld refinement strategies (i.e. the parameter turn-on-off sequences) tend to be instrument specific or even specific to a given dataset, such that selection of strategies can become a bottleneck for efficient data analysis. Managing multi-histogram datasets such as from multi-bank neutron diffractometers or caked 2D synchrotron data presents additional challenges due to the large number of histogram-specific parameters. To overcome these challenges in the Rietveld software Material Analysis Using Diffraction (MAUD), the MAUD Interface Language Kit (MILK) is developed along with an updated text batch interface for MAUD. The open-source software MILK is computer-platform independent and is packaged as a Python library that interfaces with MAUD. Using MILK, model selection (e.g. various texture or peak-broadening models), Rietveld parameter manipulation and distributed parallel batch computing can be performed through a high-level Python interface. A high-level interface enables analysis workflows to be easily programmed, shared and applied to large datasets, and external tools to be integrated with MAUD. Through modification to the MAUD batch interface, plot and data exports have been improved. The resulting hierarchical folders from Rietveld refinements with MILK are compatible with Cinema: Debye-Scherrer, a tool for visualizing and inspecting the results of multi-parameter analyses of large quantities of diffraction data. In this manuscript, the combined Python scripting and visualization capability of MILK is demonstrated with a quantitative texture and phase analysis of data collected at the HIPPO neutron diffractometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...