Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 14(13): 3407-10, 2004 Jul 05.
Article in English | MEDLINE | ID: mdl-15177442

ABSTRACT

Starting from a phenol screening hit (6), three series of benzopyranone selective estrogen receptor modulators (SERMs) have been designed, synthesized, and analyzed for both estrogen receptor alpha binding affinity and in vitro activity in two cell assays. The lead compound identified, SP500263 (13), was more potent than raloxifene and tamoxifen in a cell-based assay measuring inhibition of interleukin-6 release.


Subject(s)
Coumarins/pharmacology , Estrogen Receptor Modulators/chemical synthesis , Estrogen Receptor alpha/metabolism , Interleukin-6/metabolism , Piperidines/pharmacology , Animals , Binding Sites , Coumarins/chemical synthesis , Estradiol/chemistry , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/pharmacology , Female , Interleukin-6/antagonists & inhibitors , Molecular Structure , Piperidines/chemical synthesis , Raloxifene Hydrochloride/chemistry , Raloxifene Hydrochloride/pharmacology , Tamoxifen/chemistry , Tamoxifen/pharmacology , Tumor Cells, Cultured
2.
Cancer Res ; 62(5): 1439-42, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11888917

ABSTRACT

We have compared the antitumor activities of SP500263, a novel next-generation selective estrogen receptor modulator (SERM), tamoxifen, and raloxifene side-by-side in in vitro and in vivo MCF-7 breast cancer models. In vitro, SP500263 acted as an antiestrogen and potently inhibited estrogen-dependent MCF-7 proliferation with IC(50) values in the nanomolar range. SP500263 also strongly inhibited MCF-7 proliferation in the absence of estrogen at all of the concentrations tested. To investigate the antitumor activity of SP500263 in animals, athymic nude mice were implanted with MCF-7 tumor in the presence of a tumor growth-supporting sustained release estrogen pellet. Treatment was initiated after tumors were established. SP500263, administered for 28 days through daily i.p. dosing, effectively reduced estrogen-stimulated tumor growth at 3 and 30 mg/kg. SP500263 was as efficacious as tamoxifen and superior to raloxifene at the corresponding doses. Maximum efficacy was reached with the 30 mg/kg dose. The observed effects were highly significant. SP500263 represents a member of a novel series of SERMs that is structurally unrelated to SERMs currently on the market or in clinical development. The experiments described herein demonstrate that SP500263 is efficacious in the MCF-7 proliferation assay and in a murine model of breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Coumarins/pharmacology , Estrogen Receptor Modulators/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Piperidines/pharmacology , Selective Estrogen Receptor Modulators/pharmacology , Animals , Breast Neoplasms/pathology , Female , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Transplantation, Heterologous , Tumor Cells, Cultured
3.
J Org Chem ; 61(5): 1710-1729, 1996 Mar 08.
Article in English | MEDLINE | ID: mdl-11667041

ABSTRACT

The synthesis of 7-methoxy-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (MCBI), a substituted CBI derivative bearing a C7 methoxy group para to the C4 carbonyl, is described in efforts that establish the magnitude of potential electronic effects on the chemical and functional reactivity of the agents. The core structure of the MCBI alkylation subunit was prepared by a modified Stobbe condensation/Friedel-Crafts acylation for generation of the appropriately functionalized naphthalene precursors (15 and 20) followed by 5-exo-trig aryl radical-alkene cyclization (24 --> 25, 32 --> 33) for completion of the synthesis of the 1,2-dihydro-3H-benz[e]indole skeleton and final Ar-3' alkylation of 28 for introduction of the activated cyclopropane. Two approaches to the implementation of the key 5-exo-trig free radical cyclization are detailed with the former proceeding with closure of 24 to provide 25 in which the required product functionalization was introduced prior to cyclization and the latter with Tempo trap of the cyclization product of the unfunctionalized alkene substrate 32 to provide 33. The latter concise approach provided the MCBI subunit and its immediate precursor in 12-13 steps in superb overall conversions (27-30%). Resolution of an immediate MCBI precursor and its incorporation into both enantiomers of 39-46, analogs of CC-1065 and the duocarmycins, are detailed. A study of the solvolysis reactivity and regioselectivity of N-BOC-MCBI (29) revealed that introduction of the C7 methoxy group accelerates the rate of solvolysis by only 1.2-1.06x. This remarkably modest effect is inconsistent with C4 carbonyl protonation as the slow and rate-determining step of solvolysis or acid-catalyzed nucleophilic addition but is consistent with a mechanism in which protonation is rapid and reversible followed by slow and rate-determining nucleophilic addition to the cyclopropane requiring both the presence and assistance of a nucleophile (S(N)2 mechanism). No doubt this contributes to the DNA alkylation selectivity of this class of agents and suggests that the positioning of an accessible nucleophile (adenine N3) and not C4 carbonyl protonation is the rate-determining step controlling the sequence selectivity of the DNA alkylation reaction. This small electronic effect on the solvolysis rate had no impact on the solvolysis regioselectivity, and stereoelectronically-controlled nucleophilic addition to the least substituted carbon of the activated cyclopropane was observed exclusively. For the natural enantiomers, this unusually small electronic effect on functional reactivity had little or no perceptible effect on their DNA alkylation selectivity, efficiency, and relative rates or on their biological properties. Perceptible effects of the C7 methoxy substituent on the unnatural enantiomers were observed and they proved to be 4-40x more effective than the corresponding CBI-based unnatural enantiomers and comparable in cytotoxic potency with the MCBI natural enantiomers. This effect is most consistently rationalized not by a C7 methoxy substituent effect on functional reactivity but rather through introduction of additional stabilizing noncovalent interactions which increase the unnatural enantiomer DNA alkylation efficiency and further stabilize its inherently reversible DNA alkylation reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...