Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(51): 32711-32721, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33277431

ABSTRACT

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity. Herein, we describe the development and optimization of AK-42, a specific small-molecule inhibitor of CLC-2 with nanomolar potency (IC50 = 17 ± 1 nM). AK-42 displays unprecedented selectivity (>1,000-fold) over CLC-1, the closest CLC-2 homolog, and exhibits no off-target engagement against a panel of 61 common channels, receptors, and transporters expressed in brain tissue. Computational docking, validated by mutagenesis and kinetic studies, indicates that AK-42 binds to an extracellular vestibule above the channel pore. In electrophysiological recordings of mouse CA1 hippocampal pyramidal neurons, AK-42 acutely and reversibly inhibits CLC-2 currents; no effect on current is observed on brain slices taken from CLC-2 knockout mice. These results establish AK-42 as a powerful tool for investigating CLC-2 neurophysiology.


Subject(s)
Chloride Channels/antagonists & inhibitors , Chloride Channels/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Binding Sites , CHO Cells , CLC-2 Chloride Channels , Cell Line , Chloride Channels/genetics , Chloride Channels/metabolism , Cricetulus , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Hippocampus/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Organ Culture Techniques , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Small Molecule Libraries/metabolism , Structure-Activity Relationship
2.
PLoS Comput Biol ; 16(3): e1007530, 2020 03.
Article in English | MEDLINE | ID: mdl-32226009

ABSTRACT

This work reports a dynamical Markov state model of CLC-2 "fast" (pore) gating, based on 600 microseconds of molecular dynamics (MD) simulation. In the starting conformation of our CLC-2 model, both outer and inner channel gates are closed. The first conformational change in our dataset involves rotation of the inner-gate backbone along residues S168-G169-I170. This change is strikingly similar to that observed in the cryo-EM structure of the bovine CLC-K channel, though the volume of the intracellular (inner) region of the ion conduction pathway is further expanded in our model. From this state (inner gate open and outer gate closed), two additional states are observed, each involving a unique rotameric flip of the outer-gate residue GLUex. Both additional states involve conformational changes that orient GLUex away from the extracellular (outer) region of the ion conduction pathway. In the first additional state, the rotameric flip of GLUex results in an open, or near-open, channel pore. The equilibrium population of this state is low (∼1%), consistent with the low open probability of CLC-2 observed experimentally in the absence of a membrane potential stimulus (0 mV). In the second additional state, GLUex rotates to occlude the channel pore. This state, which has a low equilibrium population (∼1%), is only accessible when GLUex is protonated. Together, these pathways model the opening of both an inner and outer gate within the CLC-2 selectivity filter, as a function of GLUex protonation. Collectively, our findings are consistent with published experimental analyses of CLC-2 gating and provide a high-resolution structural model to guide future investigations.


Subject(s)
Chloride Channels/genetics , Ion Channel Gating/physiology , Animals , CLC-2 Chloride Channels , Cattle , Chlorides/metabolism , Computational Biology/methods , Kinetics , Markov Chains , Membrane Potentials , Models, Biological , Molecular Conformation , Molecular Dynamics Simulation , Mutation
3.
J Chem Theory Comput ; 14(2): 1071-1082, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29253336

ABSTRACT

Markov state models (MSMs) are a powerful framework for the analysis of molecular dynamics data sets, such as protein folding simulations, because of their straightforward construction and statistical rigor. The coarse-graining of MSMs into an interpretable number of macrostates is a crucial step for connecting theoretical results with experimental observables. Here we present the minimum variance clustering approach (MVCA) for the coarse-graining of MSMs into macrostate models. The method utilizes agglomerative clustering with Ward's minimum variance objective function, and the similarity of the microstate dynamics is determined using the Jensen-Shannon divergence between the corresponding rows in the MSM transition probability matrix. We first show that MVCA produces intuitive results for a simple tripeptide system and is robust toward long-duration statistical artifacts. MVCA is then applied to two protein folding simulations of the same protein in different force fields to demonstrate that a different number of macrostates is appropriate for each model, revealing a misfolded state present in only one of the simulations. Finally, we show that the same method can be used to analyze a data set containing many MSMs from simulations in different force fields by aggregating them into groups and quantifying their dynamical similarity in the context of force field parameter choices. The minimum variance clustering approach with the Jensen-Shannon divergence provides a powerful tool to group dynamics by similarity, both among model states and among dynamical models themselves.


Subject(s)
Markov Chains , Molecular Dynamics Simulation , Proteins/chemistry , Algorithms , Protein Folding
4.
J Chem Phys ; 147(10): 104107, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28915754

ABSTRACT

Beta-hairpins are substructures found in proteins that can lend insight into more complex systems. Furthermore, the folding of beta-hairpins is a valuable test case for benchmarking experimental and theoretical methods. Here, we simulate the folding of CLN025, a miniprotein with a beta-hairpin structure, at its experimental melting temperature using a range of state-of-the-art protein force fields. We construct Markov state models in order to examine the thermodynamics, kinetics, mechanism, and rate-determining step of folding. Mechanistically, we find the folding process is rate-limited by the formation of the turn region hydrogen bonds, which occurs following the downhill hydrophobic collapse of the extended denatured protein. These results are presented in the context of established and contradictory theories of the beta-hairpin folding process. Furthermore, our analysis suggests that the AMBER-FB15 force field, at this temperature, best describes the characteristics of the full experimental CLN025 conformational ensemble, while the AMBER ff99SB-ILDN and CHARMM22* force fields display a tendency to overstabilize the native state.


Subject(s)
Models, Chemical , Oligopeptides/chemistry , Hydrophobic and Hydrophilic Interactions , Markov Chains , Molecular Dynamics Simulation , Protein Denaturation , Protein Folding , Protein Structure, Secondary , Transition Temperature
5.
Sci Rep ; 7(1): 632, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28377596

ABSTRACT

Two-pore domain potassium (K2P) channel ion conductance is regulated by diverse stimuli that directly or indirectly gate the channel selectivity filter (SF). Recent crystal structures for the TREK-2 member of the K2P family reveal distinct "up" and "down" states assumed during activation via mechanical stretch. We performed 195 µs of all-atom, unbiased molecular dynamics simulations of the TREK-2 channel to probe how membrane stretch regulates the SF gate. Markov modeling reveals a novel "pinched" SF configuration that stretch activation rapidly destabilizes. Free-energy barrier heights calculated for critical steps in the conduction pathway indicate that this pinched state impairs ion conduction. Our simulations predict that this low-conductance state is accessed exclusively in the compressed, "down" conformation in which the intracellular helix arrangement allosterically pinches the SF. By explicitly relating structure to function, we contribute a critical piece of understanding to the evolving K2P puzzle.


Subject(s)
Ion Channel Gating , Markov Chains , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Humans , Intracellular Space/metabolism , Ions/chemistry , Ions/metabolism , Models, Molecular , Protein Conformation , Structure-Activity Relationship
6.
J Phys Chem B ; 121(16): 4023-4039, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28306259

ABSTRACT

The increasing availability of high-quality experimental data and first-principles calculations creates opportunities for developing more accurate empirical force fields for simulation of proteins. We developed the AMBER-FB15 protein force field by building a high-quality quantum chemical data set consisting of comprehensive potential energy scans and employing the ForceBalance software package for parameter optimization. The optimized potential surface allows for more significant thermodynamic fluctuations away from local minima. In validation studies where simulation results are compared to experimental measurements, AMBER-FB15 in combination with the updated TIP3P-FB water model predicts equilibrium properties with equivalent accuracy, and temperature dependent properties with significantly improved accuracy, in comparison with published models. We also discuss the effect of changing the protein force field and water model on the simulation results.


Subject(s)
Proteins/chemistry , Databases, Protein , Molecular Dynamics Simulation , Protein Denaturation , Quantum Theory , Software , Thermodynamics , Water/chemistry
7.
J Chem Theory Comput ; 12(12): 5960-5967, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27786477

ABSTRACT

We present a united-atom model (gb-fb15) for the molecular dynamics simulation of hydrated liquid-crystalline dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayers. This model was constructed through the parameter-space minimization of a regularized least-squares objective function via the ForceBalance method. The objective function was computed using a training set of experimental bilayer area per lipid and deuterium order parameter. This model was validated by comparison to experimental volume per lipid, X-ray scattering form factor, thermal area expansivity, area compressibility modulus, and lipid lateral diffusion coefficient. These comparisons demonstrate that gb-fb15 is robust to temperature variation and an improvement over the original model for both the training and validation properties.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Liquid Crystals/chemistry , Molecular Dynamics Simulation , Deuterium/chemistry , Lipid Bilayers/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...