Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 10(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255421

ABSTRACT

BACKGROUND: Parkinsonism is caused by dopamine (DA) insufficiency and results in a hypokinetic movement disorder. Treatment with L-Dopa can restore DA availability and improve motor function, but patients can develop L-Dopa-induced dyskinesia (LID), a secondary hyperkinetic movement disorder. The mechanism underlying LID remains unknown, and new treatments are needed. Experiments in mice have shown that DA deficiency promotes an imbalance between striatal acetylcholine (ACh) and DA that contributes to motor dysfunction. While treatment with L-Dopa improves DA availability, it promotes a paradoxical rise in striatal ACh and a further increase in the ACh to DA ratio may promote LID. METHODS: We used conditional Slc6a3DTR/+ mice to model progressive DA deficiency and the ß-adrenergic receptor (ß-AR) antagonist propranolol to limit the activity of striatal cholinergic interneurons (ChIs). DA-deficient mice were treated with L-Dopa and the dopa decarboxylase inhibitor benserazide. LID and motor performance were assessed by rotarod, balance beam, and open field testing. Electrophysiological experiments characterized the effects of ß-AR ligands on striatal ChIs. RESULTS: LID was observed in a subset of DA-deficient mice. Treatment with propranolol relieved LID and motor hyperactivity. Electrophysiological experiments showed that ß-ARs can effectively modulate ChI firing. CONCLUSIONS: The work suggests that pharmacological modulation of ChIs by ß-ARs might provide a therapeutic option for managing LID.

2.
Neuron ; 103(6): 1056-1072.e6, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31324539

ABSTRACT

Motor and cognitive functions depend on the coordinated interactions between dopamine (DA) and acetylcholine (ACh) at striatal synapses. Increased ACh availability was assumed to accompany DA deficiency based on the outcome of pharmacological treatments and measurements in animals that were critically depleted of DA. Using Slc6a3DTR/+ diphtheria-toxin-sensitive mice, we demonstrate that a progressive and L-dopa-responsive DA deficiency reduces ACh availability and the transcription of hyperpolarization-activated cation (HCN) channels that encode the spike timing of ACh-releasing tonically active striatal interneurons (ChIs). Although the production and release of ACh and DA are reduced, the preponderance of ACh over DA contributes to the motor deficit. The increase in striatal ACh relative to DA is heightened via D1-type DA receptors that activate ChIs in response to DA release from residual axons. These results suggest that stabilizing the expression of HCN channels may improve ACh-DA reciprocity and motor function in Parkinson's disease (PD). VIDEO ABSTRACT.


Subject(s)
Acetylcholine/metabolism , Cholinergic Neurons/metabolism , Dopamine/deficiency , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Interneurons/metabolism , Neostriatum/metabolism , Parkinson Disease/metabolism , Amphetamine/pharmacology , Animals , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopamine Agents/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Interneurons/drug effects , Interneurons/physiology , Mice , Neostriatum/cytology , Neostriatum/drug effects , Neostriatum/physiopathology , Parkinson Disease/physiopathology , Patch-Clamp Techniques , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Transcription, Genetic
3.
NPJ Parkinsons Dis ; 4: 23, 2018.
Article in English | MEDLINE | ID: mdl-30083593

ABSTRACT

Parkinson's disease (PD) is primarily associated with the degeneration of midbrain dopamine neurons, but it is now appreciated that pathological processes like Lewy-body inclusions and cell loss affect several other brain regions, including the central lateral (CL) and centromedian/parafascicular (CM/PF) thalamic regions. These thalamic glutamatergic neurons provide a non-cortical excitatory input to the dorsal striatum, a major projection field of dopamine neurons. To determine how thalamostriatal signaling may contribute to cognitive and motor abnormalities found in PD, we used a viral vector approach to generate mice with loss of thalamostriatal glutamate signaling specifically restricted to the dorsal striatum (CAV2Cre-Slc17a6lox/lox mice). We measured motor function and behaviors corresponding to cognitive domains (visuospatial function, attention, executive function, and working memory) affected in PD. CAV2Cre-Slc17a6lox/lox mice were impaired in motor coordination tasks such as the rotarod and beam-walk tests compared with controls (CAV2Cre-Slc17a6+/+ mice). They did not demonstrate much cognitive impairment in the Morris water maze or a water U-maze, but had slower processing reaction times in those tests and in a two-way active avoidance task. These mice could model an aspect of bradyphrenia, the slowness of thought that is often seen in patients with PD and other neurological disorders.

4.
eNeuro ; 3(1)2016.
Article in English | MEDLINE | ID: mdl-26866057

ABSTRACT

Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca(2+) influx and desensitizes α4ß2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following abstinence and a subsequent drug challenge.


Subject(s)
Amphetamine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Corpus Striatum/drug effects , Drug-Seeking Behavior/physiology , Motor Cortex/drug effects , Neuronal Plasticity/drug effects , Nicotine/administration & dosage , Nicotinic Agonists/administration & dosage , Action Potentials/drug effects , Animals , Cholinergic Neurons/drug effects , Cholinergic Neurons/physiology , Conditioning, Operant , Corpus Striatum/physiology , Female , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Cortex/physiology , Neural Pathways/drug effects , Neural Pathways/physiology , Receptors, Nicotinic/physiology , Reward , Self Administration , alpha7 Nicotinic Acetylcholine Receptor/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...