Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461590

ABSTRACT

APOBEC mutagenesis is one of the most common endogenous sources of mutations in human cancer and is a major source of genetic intratumor heterogeneity. High levels of APOBEC mutagenesis are associated with poor prognosis and aggressive disease across diverse cancers, but the mechanistic and functional impacts of APOBEC mutagenesis on tumor evolution and therapy resistance remain relatively unexplored. To address this, we investigated the contribution of APOBEC mutagenesis to acquired therapy resistance in a model of EGFR-mutant non-small cell lung cancer. We find that inhibition of EGFR in lung cancer cells leads to a rapid and pronounced induction of APOBEC3 expression and activity. Functionally, APOBEC expression promotes the survival of drug-tolerant persister cells (DTPs) following EGFR inhibition. Constitutive expression of APOBEC3B alters the evolutionary trajectory of acquired resistance to the EGFR inhibitor gefitinib, making it more likely that resistance arises through de novo acquisition of the T790M gatekeeper mutation and squamous transdifferentiation during the DTP state. APOBEC3B expression is associated with increased expression of the squamous cell transcription factor ΔNp63 and squamous cell transdifferentiation in gefitinib-resistant cells. Knockout of ΔNp63 in gefitinibresistant cells reduces the expression of the p63 target genes IL1a/b and sensitizes these cells to the thirdgeneration EGFR inhibitor osimertinib. These results suggest that APOBEC activity promotes acquired resistance by facilitating evolution and transdifferentiation in DTPs, and suggest that approaches to target ΔNp63 in gefitinib-resistant lung cancers may have therapeutic benefit.

2.
Proc Natl Acad Sci U S A ; 120(11): e2220921120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36893276

ABSTRACT

TIR domains are NAD-degrading enzymes that function during immune signaling in prokaryotes, plants, and animals. In plants, most TIR domains are incorporated into intracellular immune receptors termed TNLs. In Arabidopsis, TIR-derived small molecules bind and activate EDS1 heterodimers, which in turn activate RNLs, a class of cation channel-forming immune receptors. RNL activation drives cytoplasmic Ca2+ influx, transcriptional reprogramming, pathogen resistance, and host cell death. We screened for mutants that suppress an RNL activation mimic allele and identified a TNL, SADR1. Despite being required for the function of an autoactivated RNL, SADR1 is not required for defense signaling triggered by other tested TNLs. SADR1 is required for defense signaling initiated by some transmembrane pattern recognition receptors and contributes to the unbridled spread of cell death in lesion simulating disease 1. Together with RNLs, SADR1 regulates defense gene expression at infection site borders, likely in a non-cell autonomous manner. RNL mutants that cannot sustain this pattern of gene expression are unable to prevent disease spread beyond localized infection sites, suggesting that this pattern corresponds to a pathogen containment mechanism. SADR1 potentiates RNL-driven immune signaling not only through the activation of EDS1 but also partially independently of EDS1. We studied EDS1-independent TIR function using nicotinamide, an NADase inhibitor. Nicotinamide decreased defense induction from transmembrane pattern recognition receptors and decreased calcium influx, pathogen growth restriction, and host cell death following intracellular immune receptor activation. We demonstrate that TIR domains can potentiate calcium influx and defense and are thus broadly required for Arabidopsis immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Calcium/metabolism , Receptors, Immunologic/metabolism , Niacinamide/metabolism , Plant Immunity/genetics , Plant Diseases/genetics
3.
NPJ Breast Cancer ; 8(1): 111, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36163365

ABSTRACT

Recurrent cancer cells that evade therapy is a leading cause of death in breast cancer patients. This risk is high for women showing an overexpression of human epidermal growth factor receptor 2 (Her2). Cells that persist can rely on different substrates for energy production relative to their primary tumor counterpart. Here, we characterize metabolic reprogramming related to tumor dormancy and recurrence in a doxycycline-induced Her2+/Neu model of breast cancer with varying times to recurrence using longitudinal fluorescence microscopy. Glucose uptake (2-NBDG) and mitochondrial membrane potential (TMRE) imaging metabolically phenotype mammary tumors as they transition to regression, dormancy, and recurrence. "Fast-recurrence" tumors (time to recurrence ~55 days), transition from glycolysis to mitochondrial metabolism during regression and this persists upon recurrence. "Slow-recurrence" tumors (time to recurrence ~100 days) rely on both glycolysis and mitochondrial metabolism during recurrence. The increase in mitochondrial activity in fast-recurrence tumors is attributed to a switch from glucose to fatty acids as the primary energy source for mitochondrial metabolism. Consequently, when fast-recurrence tumors receive treatment with a fatty acid inhibitor, Etomoxir, tumors report an increase in glucose uptake and lipid synthesis during regression. Treatment with Etomoxir ultimately prolongs survival. We show that metabolic reprogramming reports on tumor recurrence characteristics, particularly at time points that are essential for actionable targets. The temporal characteristics of metabolic reprogramming will be critical in determining the use of an appropriate timing for potential therapies; namely, the notion that metabolic-targeted inhibition during regression reports long-term therapeutic benefit.

4.
Cancer Immunol Res ; 10(1): 70-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34795033

ABSTRACT

The APOBEC family of cytidine deaminases is one of the most common endogenous sources of mutations in human cancer. Genomic studies of tumors have found that APOBEC mutational signatures are enriched in the HER2 subtype of breast cancer and are associated with immunotherapy response in diverse cancer types. However, the direct consequences of APOBEC mutagenesis on the tumor immune microenvironment have not been thoroughly investigated. To address this, we developed syngeneic murine mammary tumor models with inducible expression of APOBEC3B. We found that APOBEC activity induced antitumor adaptive immune responses and CD4+ T cell-mediated, antigen-specific tumor growth inhibition. Although polyclonal APOBEC tumors had a moderate growth defect, clonal APOBEC tumors were almost completely rejected, suggesting that APOBEC-mediated genetic heterogeneity limits antitumor adaptive immune responses. Consistent with the observed immune infiltration in APOBEC tumors, APOBEC activity sensitized HER2-driven breast tumors to anti-CTLA-4 checkpoint inhibition and led to a complete response to combination anti-CTLA-4 and anti-HER2 therapy. In human breast cancers, the relationship between APOBEC mutagenesis and immunogenicity varied by breast cancer subtype and the frequency of subclonal mutations. This work provides a mechanistic basis for the sensitivity of APOBEC tumors to checkpoint inhibitors and suggests a rationale for using APOBEC mutational signatures and clonality as biomarkers predicting immunotherapy response in HER2-positive (HER2+) breast cancers.


Subject(s)
APOBEC Deaminases/genetics , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Immunotherapy/methods , T-Lymphocytes/immunology , APOBEC Deaminases/immunology , Animals , Antigens, Neoplasm , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mutagenesis/immunology , Mutation , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
5.
Sci Rep ; 11(1): 14932, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294755

ABSTRACT

Whole-genome duplication (WGD) generates polyploid cells possessing more than two copies of the genome and is among the most common genetic abnormalities in cancer. The frequency of WGD increases in advanced and metastatic tumors, and WGD is associated with poor prognosis in diverse tumor types, suggesting a functional role for polyploidy in tumor progression. Experimental evidence suggests that polyploidy has both tumor-promoting and suppressing effects, but how polyploidy regulates tumor progression remains unclear. Using a genetically engineered mouse model of Her2-driven breast cancer, we explored the prevalence and consequences of whole-genome duplication during tumor growth and recurrence. While primary tumors in this model are invariably diploid, nearly 40% of recurrent tumors undergo WGD. WGD in recurrent tumors was associated with increased chromosomal instability, decreased proliferation and increased survival in stress conditions. The effects of WGD on tumor growth were dependent on tumor stage. Surprisingly, in recurrent tumor cells WGD slowed tumor formation, growth rate and opposed the process of recurrence, while WGD promoted the growth of primary tumors. These findings highlight the importance of identifying conditions that promote the growth of polyploid tumors, including the cooperating genetic mutations that allow cells to overcome the barriers to WGD tumor cell growth and proliferation.


Subject(s)
Gene Duplication , In Situ Hybridization, Fluorescence/methods , Karyotyping/methods , Mammary Neoplasms, Experimental/genetics , Receptor, ErbB-2/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Chromosomal Instability , Evolution, Molecular , Female , Humans , Mice , Mice, Transgenic , Polyploidy
6.
Nat Metab ; 2(4): 318-334, 2020 04.
Article in English | MEDLINE | ID: mdl-32691018

ABSTRACT

The survival and recurrence of dormant tumour cells following therapy is a leading cause of death in cancer patients. The metabolic properties of these cells are likely distinct from those of rapidly growing tumours. Here we show that Her2 down-regulation in breast cancer cells promotes changes in cellular metabolism, culminating in oxidative stress and compensatory upregulation of the antioxidant transcription factor, NRF2. NRF2 is activated during dormancy and in recurrent tumours in animal models and breast cancer patients with poor prognosis. Constitutive activation of NRF2 accelerates recurrence, while suppression of NRF2 impairs it. In recurrent tumours, NRF2 signalling induces a transcriptional metabolic reprogramming to re-establish redox homeostasis and upregulate de novo nucleotide synthesis. The NRF2-driven metabolic state renders recurrent tumour cells sensitive to glutaminase inhibition, which prevents reactivation of dormant tumour cells in vitro, suggesting that NRF2-high dormant and recurrent tumours may be targeted. These data provide evidence that NRF2-driven metabolic reprogramming promotes the recurrence of dormant breast cancer.


Subject(s)
NF-E2-Related Factor 2/metabolism , Nucleotides/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Death , Cell Line, Tumor , Down-Regulation , Female , Homeostasis , Humans , Mice , Neoplasm Recurrence, Local , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Receptor, ErbB-2/metabolism , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...