Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(1): e2302480120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147646

ABSTRACT

Arid and semi-arid regions of the world are particularly vulnerable to greenhouse gas-driven hydroclimate change. Climate models are our primary tool for projecting the future hydroclimate that society in these regions must adapt to, but here, we present a concerning discrepancy between observed and model-based historical hydroclimate trends. Over the arid/semi-arid regions of the world, the predominant signal in all model simulations is an increase in atmospheric water vapor, on average, over the last four decades, in association with the increased water vapor-holding capacity of a warmer atmosphere. In observations, this increase in atmospheric water vapor has not happened, suggesting that the availability of moisture to satisfy the increased atmospheric demand is lower in reality than in models in arid/semi-arid regions. This discrepancy is most clear in locations that are arid/semi-arid year round, but it is also apparent in more humid regions during the most arid months of the year. It indicates a major gap in our understanding and modeling capabilities which could have severe implications for hydroclimate projections, including fire hazard, moving forward.

2.
Proc Natl Acad Sci U S A ; 119(10)2022 03 08.
Article in English | MEDLINE | ID: mdl-35193939

ABSTRACT

Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs (P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Significance is assessed by comparing prefire and postfire streamflow responses to climate and also to streamflow among 107 control basins that experienced little to no wildfire during the study period. The streamflow response scales with fire extent: among the 29 basins where >20% of forest area burned in a year, streamflow over the first 6 water years postfire increased by a multibasin average of 0.38 SDs, or 30%. Postfire streamflow increases were significant in all four seasons. Historical fire-climate relationships combined with climate model projections suggest that 2021 to 2050 will see repeated years when climate is more fire-conducive than in 2020, the year currently holding the modern record for WUS forest area burned. These findings center on relatively small, minimally managed basins, but our results suggest that burned areas will grow enough over the next 3 decades to enhance streamflow at regional scales. Wildfire is an emerging driver of runoff change that will increasingly alter climate impacts on water supplies and runoff-related risks.


Subject(s)
Climate Change , Forests , Seasons , Water Supply , Wildfires , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...