Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 5(10): e272, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17927449

ABSTRACT

Beta-diversity, the change in species composition between places, is a critical but poorly understood component of biological diversity. Patterns of beta-diversity provide information central to many ecological and evolutionary questions, as well as to conservation planning. Yet beta-diversity is rarely studied across large extents, and the degree of similarity of patterns among taxa at such scales remains untested. To our knowledge, this is the first broad-scale analysis of cross-taxon congruence in beta-diversity, and introduces a new method to map beta-diversity continuously across regions. Congruence between amphibian, bird, and mammal beta-diversity in the Western Hemisphere varies with both geographic location and spatial extent. We demonstrate that areas of high beta-diversity for the three taxa largely coincide, but areas of low beta-diversity exhibit little overlap. These findings suggest that similar processes lead to high levels of differentiation in amphibian, bird, and mammal assemblages, while the ecological and biogeographic factors influencing homogeneity in vertebrate assemblages vary. Knowledge of beta-diversity congruence can help formulate hypotheses about the mechanisms governing regional diversity patterns and should inform conservation, especially as threat from global climate change increases.


Subject(s)
Amphibians/physiology , Biodiversity , Birds/physiology , Conservation of Natural Resources , Mammals/physiology , Americas , Amphibians/classification , Animals , Birds/classification , Environment , Mammals/classification , Population Dynamics , Species Specificity
2.
Nature ; 440(7081): 212-4, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16382239

ABSTRACT

Understanding patterns of biodiversity distribution is essential to conservation strategies, but severe data constraints make surrogate measures necessary. For this reason, many studies have tested the performance of terrestrial vertebrates as surrogates for overall species diversity, but these tests have typically been limited to a single taxon or region. Here we show that global patterns of richness are highly correlated among amphibians, reptiles, birds and mammals, as are endemism patterns. Furthermore, we demonstrate that although the correlation between global richness and endemism is low, aggregate regions selected for high levels of endemism capture significantly more species than expected by chance. Although areas high in endemism have long been targeted for the protection of narrow-ranging species, our findings provide evidence that endemism is also a useful surrogate for the conservation of all terrestrial vertebrates.


Subject(s)
Biodiversity , Vertebrates/physiology , Animals , Conservation of Natural Resources , Models, Biological , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...