Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 292(16): 6431-6437, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28292928

ABSTRACT

Elongin A performs dual functions as the transcriptionally active subunit of RNA polymerase II (Pol II) elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that ubiquitylates Pol II in response to DNA damage. Assembly of the Elongin A ubiquitin ligase and its recruitment to sites of DNA damage is a tightly regulated process induced by DNA-damaging agents and α-amanitin, a drug that induces Pol II stalling. In this study, we demonstrate (i) that Elongin A and the ubiquitin ligase subunit CUL5 associate in cells with the Cockayne syndrome B (CSB) protein and (ii) that this interaction is also induced by DNA-damaging agents and α-amanitin. In addition, we present evidence that the CSB protein promotes stable recruitment of the Elongin A ubiquitin ligase to sites of DNA damage. Our findings are consistent with the model that the Elongin A ubiquitin ligase and the CSB protein function together in a common pathway in response to Pol II stalling and DNA damage.


Subject(s)
DNA Damage , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Alpha-Amanitin/metabolism , Cell Line , Cullin Proteins/metabolism , DNA Repair , Elongin , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/metabolism , Humans , Image Processing, Computer-Assisted , Mutation , Plasmids/metabolism , Poly-ADP-Ribose Binding Proteins , Transcription Factors/genetics
2.
J Biol Chem ; 290(24): 15030-41, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25878247

ABSTRACT

Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription.


Subject(s)
Mutagens/pharmacology , Oxidative Stress , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Elongin , Fluorescence Resonance Energy Transfer , Fluorescent Antibody Technique, Indirect , HEK293 Cells , Humans , RNA, Messenger/genetics , Tretinoin/pharmacology , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...