Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Clin Sci (Lond) ; 138(1): 65-85, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38197178

ABSTRACT

Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.


Subject(s)
Immunity, Humoral , Sepsis , Animals , Humans , T-Lymphocytes , B-Lymphocytes , Immunosuppressive Agents
2.
Mov Ecol ; 11(1): 37, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408064

ABSTRACT

BACKGROUND: For many migratory species, inexperienced (naïve) individuals reach remote non-breeding areas independently using one or more inherited compass headings and, potentially, magnetic signposts to gauge where to switch between compass headings. Inherited magnetic-based migration has not yet been assessed as a population-level process, particularly across strong geomagnetic gradients or where long-term geomagnetic shifts (hereafter, secular variation) could create mismatches with magnetic headings. Therefore, it remains unclear whether inherited magnetic headings and signposts could potentially adapt to secular variation under natural selection. METHODS: To address these unknowns, we modelled migratory orientation programs using an evolutionary algorithm incorporating global geomagnetic data (1900-2023). Modelled population mixing incorporated both natal dispersal and trans-generational inheritance of magnetic headings and signposts, including intrinsic (stochastic) variability in inheritance. Using the model, we assessed robustness of trans-hemispheric migration of a migratory songbird whose Nearctic breeding grounds have undergone rapid secular variation (mean 34° clockwise drift in declination, 1900-2023), and which travels across strong geomagnetic gradients via Europe to Africa. RESULTS: Model-evolved magnetic-signposted migration was overall successful throughout the 124-year period, with 60-90% mean successful arrival across a broad range in plausible precision in compass headings and gauging signposts. Signposted migration reduced trans-Atlantic flight distances and was up to twice as successful compared with non-signposted migration. Magnetic headings shifted plastically in response to the secular variation (mean 16°-17° among orientation programs), whereas signpost latitudes were more constrained (3°-5° mean shifts). This plasticity required intrinsic variability in inheritance (model-evolved σ ≈ 2.6° standard error), preventing clockwise secular drift from causing unsustainable open-ocean flights. CONCLUSIONS: Our study supports the potential long-term viability of inherited magnetic migratory headings and signposts, and illustrates more generally how inherited migratory orientation programs can both mediate and constrain evolution of routes, in response to global environmental change.

3.
J Biol Chem ; 299(8): 104981, 2023 08.
Article in English | MEDLINE | ID: mdl-37390984

ABSTRACT

CD8+ T cell-mediated recognition of peptide-major histocompatibility complex class I (pMHCI) molecules involves cooperative binding of the T cell receptor (TCR), which confers antigen specificity, and the CD8 coreceptor, which stabilizes the TCR/pMHCI complex. Earlier work has shown that the sensitivity of antigen recognition can be regulated in vitro by altering the strength of the pMHCI/CD8 interaction. Here, we characterized two CD8 variants with moderately enhanced affinities for pMHCI, aiming to boost antigen sensitivity without inducing non-specific activation. Expression of these CD8 variants in model systems preferentially enhanced pMHCI antigen recognition in the context of low-affinity TCRs. A similar effect was observed using primary CD4+ T cells transduced with cancer-targeting TCRs. The introduction of high-affinity CD8 variants also enhanced the functional sensitivity of primary CD8+ T cells expressing cancer-targeting TCRs, but comparable results were obtained using exogenous wild-type CD8. Specificity was retained in every case, with no evidence of reactivity in the absence of cognate antigen. Collectively, these findings highlight a generically applicable mechanism to enhance the sensitivity of low-affinity pMHCI antigen recognition, which could augment the therapeutic efficacy of clinically relevant TCRs.


Subject(s)
CD8 Antigens , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Lymphocyte Activation , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Humans
4.
PLoS One ; 18(5): e0284736, 2023.
Article in English | MEDLINE | ID: mdl-37186599

ABSTRACT

Biological processes involve movements across all measurable scales. Similarity measures can be applied to compare and analyze these movements but differ in how differences in movement are aggregated across space and time. The present study reviews frequently-used similarity measures, such as the Hausdorff distance, Fréchet distance, Dynamic Time Warping, and Longest Common Subsequence, jointly with several measures less used in biological applications (Wasserstein distance, weak Fréchet distance, and Kullback-Leibler divergence), and provides computational tools for each of them that may be used in computational biology. We illustrate the use of the selected similarity measures in diagnosing differences within two extremely contrasting sets of biological data, which, remarkably, may both be relevant for magnetic field perception by migratory birds. Specifically, we assess and discuss cryptochrome protein conformational dynamics and extreme migratory trajectories of songbirds between Alaska and Africa. We highlight how similarity measures contrast regarding computational complexity and discuss those which can be useful in noise elimination or, conversely, are sensitive to spatiotemporal scales.


Subject(s)
Movement , Songbirds , Animals , Protein Conformation , Computational Biology , Africa
5.
BMJ Open ; 13(3): e067002, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36972964

ABSTRACT

INTRODUCTION: Early recognition and appropriate management of paediatric sepsis are known to improve outcomes. A previous system's biology investigation of the systemic immune response in neonates to sepsis identified immune and metabolic markers that showed high accuracy for detecting bacterial infection. Further gene expression markers have also been reported previously in the paediatric age group for discriminating sepsis from control cases. More recently, specific gene signatures were identified to discriminate between COVID-19 and its associated inflammatory sequelae. Through the current prospective cohort study, we aim to evaluate immune and metabolic blood markers which discriminate between sepses (including COVID-19) from other acute illnesses in critically unwell children and young persons, up to 18 years of age. METHODS AND ANALYSIS: We describe a prospective cohort study for comparing the immune and metabolic whole-blood markers in patients with sepsis, COVID-19 and other illnesses. Clinical phenotyping and blood culture test results will provide a reference standard to evaluate the performance of blood markers from the research sample analysis. Serial sampling of whole blood (50 µL each) will be collected from children admitted to intensive care and with an acute illness to follow time dependent changes in biomarkers. An integrated lipidomics and RNASeq transcriptomics analyses will be conducted to evaluate immune-metabolic networks that discriminate sepsis and COVID-19 from other acute illnesses. This study received approval for deferred consent. ETHICS AND DISSEMINATION: The study has received research ethics committee approval from the Yorkshire and Humber Leeds West Research Ethics Committee 2 (reference 20/YH/0214; IRAS reference 250612). Submission of study results for publication will involve making available all anonymised primary and processed data on public repository sites. TRIAL REGISTRATION NUMBER: NCT04904523.


Subject(s)
COVID-19 , Sepsis , Adolescent , Child , Humans , Infant, Newborn , Acute Disease , COVID-19/diagnosis , Prospective Studies , SARS-CoV-2 , Sepsis/diagnosis
6.
Commun Biol ; 6(1): 78, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670205

ABSTRACT

Severe bacterial or viral infections can induce a state of immune hyperactivation that can culminate in a potentially lethal cytokine storm. The classic example is toxic shock syndrome, a life-threatening complication of Staphylococcus aureus or Streptococcus pyogenes infection, which is driven by potent toxins known as superantigens (SAgs). SAgs are thought to promote immune evasion via the promiscuous activation of T cells, which subsequently become hyporesponsive, and act by cross-linking major histocompatibility complex class II molecules on antigen-presenting cells to particular ß-chain variable (TRBV) regions of αß T cell receptors (TCRs). Although some of these interactions have been defined previously, our knowledge of SAg-responsive TRBV regions is incomplete. In this study, we found that CD4+ and CD8+ T cells expressing TRBV12-3/12-4+ TCRs were highly responsive to streptococcal pyrogenic exotoxin C (SpeC) and toxic shock syndrome toxin-1 (TSST-1). In particular, SpeC and TSST-1 specifically induced effector cytokine production and the upregulation of multiple coinhibitory receptors among TRBV12-3/12-4+ CD4+ and CD8+ memory T cells, and importantly, these biological responses were dependent on human leukocyte antigen (HLA)-DR. Collectively, these data provided evidence of functionally determinative and therapeutically relevant interactions between SpeC and TSST-1 and CD4+ and CD8+ memory T cells expressing TRBV12-3/12-4+ TCRs, mediated via HLA-DR.


Subject(s)
Lymphocyte Activation , Memory T Cells , Superantigens , Humans , CD8-Positive T-Lymphocytes/immunology , Memory T Cells/immunology , Receptors, Antigen, T-Cell , Superantigens/immunology
7.
Diabetologia ; 66(1): 44-56, 2023 01.
Article in English | MEDLINE | ID: mdl-36224274

ABSTRACT

AIMS/HYPOTHESIS: South Asians have a two- to fivefold higher risk of developing type 2 diabetes than those of white European descent. Greater central adiposity and storage of fat in deeper or ectopic depots are potential contributing mechanisms. We collated existing and new data on the amount of subcutaneous (SAT), visceral (VAT) and liver fat in adults of South Asian and white European descent to provide a robust assessment of potential ethnic differences in these factors. METHODS: We performed a systematic review of the Embase and PubMed databases from inception to August 2021. Unpublished imaging data were also included. The weighted standardised mean difference (SMD) for each adiposity measure was estimated using random-effects models. The quality of the studies was assessed using the ROBINS-E tool for risk of bias and overall certainty of the evidence was assessed using the GRADE approach. The study was pre-registered with the OSF Registries ( https://osf.io/w5bf9 ). RESULTS: We summarised imaging data on SAT, VAT and liver fat from eight published and three previously unpublished datasets, including a total of 1156 South Asian and 2891 white European men, and 697 South Asian and 2271 white European women. Despite South Asian men having a mean BMI approximately 0.5-0.7 kg/m2 lower than white European men (depending on the comparison), nine studies showed 0.34 SMD (95% CI 0.12, 0.55; I2=83%) more SAT and seven studies showed 0.56 SMD (95% CI 0.14, 0.98; I2=93%) more liver fat, but nine studies had similar VAT (-0.03 SMD; 95% CI -0.24, 0.19; I2=85%) compared with their white European counterparts. South Asian women had an approximately 0.9 kg/m2 lower BMI but 0.31 SMD (95% CI 0.14, 0.48; I2=53%) more liver fat than their white European counterparts in five studies. Subcutaneous fat levels (0.03 SMD; 95% CI -0.17, 0.23; I2=72%) and VAT levels (0.04 SMD; 95% CI -0.16, 0.24; I2=71%) did not differ significantly between ethnic groups in eight studies of women. CONCLUSIONS/INTERPRETATION: South Asian men and women appear to store more ectopic fat in the liver compared with their white European counterparts with similar BMI levels. Given the emerging understanding of the importance of liver fat in diabetes pathogenesis, these findings help explain the greater diabetes risks in South Asians. FUNDING: There was no primary direct funding for undertaking the systematic review and meta-analysis.


Subject(s)
Diabetes Mellitus, Type 2 , Female , Humans , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/physiopathology , Liver , Subcutaneous Fat , White People , South Asian People
8.
Commun Biol ; 5(1): 1058, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195660

ABSTRACT

Migratory orientation of many animals is inheritable, enabling inexperienced (naïve) individuals to migrate independently using a geomagnetic or celestial compass. It remains unresolved how naïve migrants reliably reach remote destinations, sometimes correcting for orientation error or displacement. To assess naïve migratory performance (successful arrival), we simulate and assess proposed compass courses for diverse airborne migratory populations, accounting for spherical-geometry effects, compass precision, cue transfers (e.g., sun to star compass), and geomagnetic variability. We formulate how time-compensated sun-compass headings partially self-correct, according to how inner-clocks are updated. For the longest-distance migrations simulated, time-compensated sun-compass courses are most robust to error, and most closely resemble known routes. For shorter-distance nocturnal migrations, geomagnetic or star-compass courses are most robust, due to not requiring nightly cue-transfers. Our predictive study provides a basis for assessment of compass-based naïve migration and mechanisms of self-correction, and supports twilight sun-compass orientation being key to many long-distance inaugural migrations.


Subject(s)
Animal Migration , Orientation , Animals
9.
BMJ Open ; 12(9): e066382, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115679

ABSTRACT

INTRODUCTION: Maternal sepsis remains a leading cause of death in pregnancy. Physiological adaptations to pregnancy obscure early signs of sepsis and can result in delays in recognition and treatment. Identifying biomarkers that can reliably diagnose sepsis will reduce morbidity and mortality and antibiotic overuse. We have previously identified an immune-metabolic biomarker network comprising three pathways with a >99% accuracy for detecting bacterial neonatal sepsis. In this prospective study, we will describe physiological parameters and novel biomarkers in two cohorts-healthy pregnant women and pregnant women with suspected sepsis-with the aim of mapping pathophysiological drivers and evaluating predictive biomarkers for diagnosing maternal sepsis. METHODS AND ANALYSIS: Women aged over 18 with an ultrasound-confirmed pregnancy will be recruited to a pilot and two main study cohorts. The pilot will involve blood sample collection from 30 pregnant women undergoing an elective caesarean section. Cohort A will follow 100 healthy pregnant women throughout their pregnancy journey, with collection of blood samples from participants at routine time points in their pregnancy: week 12 'booking', week 28 and during labour. Cohort B will follow 100 pregnant women who present with suspected sepsis in pregnancy or labour and will have at least two blood samples taken during their care pathway. Study blood samples will be collected during routine clinical blood sampling. Detailed medical history and physiological parameters at the time of blood sampling will be recorded, along with the results of routine biochemical tests, including C reactive protein, lactate and white blood cell count. In addition, study blood samples will be processed and analysed for transcriptomic, lipidomic and metabolomic analyses and both qualitative and functional immunophenotyping. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Wales Research Ethics Committee 2 (SPON1752-19, 30 October 2019). TRIAL REGISTRATION NUMBER: NCT05023954.


Subject(s)
Pre-Eclampsia , Pregnancy Complications, Infectious , Sepsis , Adolescent , Adult , Anti-Bacterial Agents , Biomarkers , C-Reactive Protein , Cesarean Section , Cohort Studies , Female , Humans , Infant, Newborn , Lactates , Observational Studies as Topic , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnant Women , Prospective Studies
11.
Cell Rep ; 38(9): 110449, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235807

ABSTRACT

Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.


Subject(s)
HIV Infections , HIV-1 , Amino Acid Sequence , Amino Acids , Antigen Presentation , Epitopes, T-Lymphocyte , HLA-B Antigens/genetics , Humans , Peptides
12.
Nat Commun ; 13(1): 139, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013270

ABSTRACT

Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial ß-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin ß-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by ß-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial ß-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Lipid Metabolism/genetics , Mitochondria/drug effects , Oxylipins/metabolism , Peritonitis/genetics , Sepsis/genetics , Acyl-CoA Dehydrogenase, Long-Chain/blood , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Animals , Carnitine O-Palmitoyltransferase/blood , Carnitine O-Palmitoyltransferase/genetics , Coenzyme A Ligases/blood , Coenzyme A Ligases/genetics , Female , Gene Expression Regulation , Humans , Infant, Newborn , Interferon-gamma/pharmacology , Lipidomics/methods , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Trifunctional Protein, beta Subunit/blood , Mitochondrial Trifunctional Protein, beta Subunit/genetics , Oxidation-Reduction , Peritonitis/blood , Peritonitis/chemically induced , Peritonitis/pathology , RAW 264.7 Cells , Sepsis/blood , Sepsis/pathology
13.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34850742

ABSTRACT

Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1-seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen.


Subject(s)
AIDS Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , HIV Antibodies/immunology , HIV-1/immunology , Immunologic Memory , Adolescent , Adult , Antibodies, Neutralizing/immunology , DNA/analysis , Double-Blind Method , Epitopes/chemistry , Female , HIV Infections/immunology , Humans , Immunity , Immunization, Secondary , Male , Middle Aged , Vaccines, DNA/immunology , Vaccinia virus/immunology , Young Adult , env Gene Products, Human Immunodeficiency Virus/immunology
14.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34272276

ABSTRACT

CD8+ T cells are inherently cross-reactive and recognize numerous peptide antigens in the context of a given major histocompatibility complex class I (MHCI) molecule via the clonotypically expressed T cell receptor (TCR). The lineally expressed coreceptor CD8 interacts coordinately with MHCI at a distinct and largely invariant site to slow the TCR/peptide-MHCI (pMHCI) dissociation rate and enhance antigen sensitivity. However, this biological effect is not necessarily uniform, and theoretical models suggest that antigen sensitivity can be modulated in a differential manner by CD8. We used two intrinsically controlled systems to determine how the relationship between the TCR/pMHCI interaction and the pMHCI/CD8 interaction affects the functional sensitivity of antigen recognition. Our data show that modulation of the pMHCI/CD8 interaction can reorder the agonist hierarchy of peptide ligands across a spectrum of affinities for the TCR.


Subject(s)
CD8 Antigens/immunology , Peptides/agonists , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Antigens/chemistry , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Reactions , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Kinetics , Ligands , Lymphocyte Activation , Models, Immunological , Mutation
15.
BMJ Open ; 11(12): e050100, 2021 12 30.
Article in English | MEDLINE | ID: mdl-37010923

ABSTRACT

INTRODUCTION: Diagnosing neonatal sepsis is heavily dependent on clinical phenotyping as culture-positive body fluid has poor sensitivity, and existing blood biomarkers have poor specificity.A combination of machine learning, statistical and deep pathway biology analyses led to the identification of a tripartite panel of biologically connected immune and metabolic markers that showed greater than 99% accuracy for detecting bacterial infection with 100% sensitivity. The cohort study described here is designed as a large-scale clinical validation of this previous work. METHODS AND ANALYSIS: This multicentre observational study will prospectively recruit a total of 1445 newborn infants (all gestations)-1084 with suspected early-or late-onset sepsis, and 361 controls-over 4 years. A small volume of whole blood will be collected from infants with suspected sepsis at the time of presentation. This sample will be used for integrated transcriptomic, lipidomic and targeted proteomics profiling. In addition, a subset of samples will be subjected to cellular phenotype and proteomic analyses. A second sample from the same patient will be collected at 24 hours, with an opportunistic sampling for stool culture. For control infants, only one set of blood and stool sample will be collected to coincide with clinical blood sampling. Along with detailed clinical information, blood and stool samples will be analysed and the information will be used to identify and validate the efficacy of immune-metabolic networks in the diagnosis of bacterial neonatal sepsis and to identify new host biomarkers for viral sepsis. ETHICS AND DISSEMINATION: The study has received research ethics committee approval from the Wales Research Ethics Committee 2 (reference 19/WA/0008) and operational approval from Health and Care Research Wales. Submission of study results for publication will involve making available all anonymised primary and processed data on public repository sites. TRIAL REGISTRATION NUMBER: NCT03777670.


Subject(s)
Neonatal Sepsis , Sepsis , Humans , Biomarkers , Cohort Studies , Multicenter Studies as Topic , Neonatal Sepsis/diagnosis , Neonatal Sepsis/microbiology , Observational Studies as Topic , Prospective Studies , Proteomics
16.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32913633

ABSTRACT

The best way to ensure that preterm infants benefit from relevant neonatal expertise as soon as they are born is to transfer the mother and baby to an appropriately specialised neonatal facility before birth (" in utero"). This review explores the evidence surrounding the importance of being born in the right unit, the advantages of in utero transfers compared to ex utero transfers, and how to accurately assess which women are at most risk of delivering early and the challenges of in utero transfers. Accurate identification of the women most at risk of preterm birth is key to prioritising who to transfer antenatally, but the administrative burden and pathway variation of in utero transfer in the UK are likely to compromise optimal clinical care. Women reported the impact that in utero transfers have on them, including the emotional and financial burdens of being transferred and the anxiety surrounding domestic and logistical concerns related to being away from home. The final section of the review explores new approaches to reforming the in utero transfer process, including learning from outside the UK and changing policy and guidelines. Examples of collaborative regional guidance include the recent Pan-London guidance on in utero transfers. Reforming the transfer process can also be aided through technology, such as utilising the CotFinder app. In utero transfer is an unavoidable aspect of maternity and neonatal care, and the burden will increase if preterm birth rates continue to rise in association with increased rates of multiple pregnancy, advancing maternal age, assisted reproductive technologies, and obstetric interventions. As funding and capacity pressures on health services increase because of the COVID-19 pandemic, better prioritisation and sustained multi-disciplinary commitment are essential to maximise better outcomes for babies born too soon.


Subject(s)
Child Health Services , Infant, Premature , Maternal Health Services/organization & administration , Patient Transfer , COVID-19 , Coronavirus Infections , Female , Humans , Infant , Infant, Newborn , Pandemics , Pneumonia, Viral , Pregnancy , Pregnancy, Multiple , United Kingdom
17.
Int J Mol Sci ; 21(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858901

ABSTRACT

The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αß T cells, along with unconventional αß or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.


Subject(s)
Antigens, Bacterial/immunology , Bacteria/immunology , T-Lymphocytes/metabolism , Adaptive Immunity , Animals , Bacteria/pathogenicity , Humans , Immune Evasion , Immunity, Innate
18.
Clin Transl Immunology ; 9(6): e1141, 2020.
Article in English | MEDLINE | ID: mdl-32547743

ABSTRACT

OBJECTIVES: Vaccines that prime Wilms' tumor 1 (WT1)-specific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The C-type lectin-like receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ T-cell responses. We developed a new vaccine comprising a human anti-CLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naïve and memory WT1-specific CD8+ T cells. METHODS: WT1 was genetically fused to antibodies specific for human CLEC9A, DEC-205 or ß-galactosidase (untargeted control). Activation of WT1-specific CD8+ T-cell lines following cross-presentation by CD141+ DCs was quantified by IFNγ ELISPOT. Humanised mice reconstituted with human immune cell subsets, including a repertoire of naïve WT1-specific CD8+ T cells, were used to investigate naïve WT1-specific CD8+ T-cell priming. RESULTS: The CLEC9A-WT1 vaccine promoted cross-presentation of WT1 epitopes to CD8+ T cells and mediated priming of naïve CD8+ T cells more effectively than the DEC-205-WT1 and untargeted control-WT1 vaccines. CONCLUSIONS: Delivery of WT1 to CD141+ DCs via CLEC9A stimulates CD8+ T cells more potently than either untargeted delivery or widespread delivery to all Ag-presenting cells via DEC-205, suggesting that cross-presentation by CD141+ DCs is sufficient for effective CD8+ T-cell priming in humans. The CLEC9A-WT1 vaccine is a promising candidate immunotherapy for malignancies that express WT1.

19.
Immunol Cell Biol ; 98(9): 770-781, 2020 10.
Article in English | MEDLINE | ID: mdl-32568415

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are key players in the immune response against microbial infection. The MAIT T-cell receptor (TCR) recognizes a diverse array of microbial ligands, and recent reports have highlighted the variability in the MAIT TCR that could further contribute to discrimination of ligand. The MAIT TCR complementarity determining region (CDR)3ß sequence displays a high level of diversity across individuals, and clonotype usage appears to be dependent on antigenic exposure. To address the relationship between the MAIT TCR and microbial ligand, we utilized a previously defined panel of MAIT cell clones that demonstrated variability in responses against different microbial infections. Sequencing of these clones revealed four pairs, each with shared (identical) CDR3α and different CDR3ß sequences. These pairs demonstrated varied responses against microbially infected dendritic cells as well as against 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil, a ligand abundant in Salmonella enterica serovar Typhimurium, suggesting that the CDR3ß contributes to differences in ligand discrimination. Taken together, these results highlight a key role for the MAIT CDR3ß region in distinguishing between MR1-bound antigens and ligands.


Subject(s)
Bacterial Infections/immunology , Complementarity Determining Regions/genetics , Genes, T-Cell Receptor beta , Lymphocyte Activation , Mucosal-Associated Invariant T Cells , Humans , Ligands , Mucosal-Associated Invariant T Cells/immunology , Ribitol/analogs & derivatives , Uracil/analogs & derivatives
20.
J Exp Med ; 217(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32106283

ABSTRACT

T cells are classically recognized as distinct subsets that express αß or γδ TCRs. We identify a novel population of T cells that coexpress αß and γδ TCRs in mice and humans. These hybrid αß-γδ T cells arose in the murine fetal thymus by day 16 of ontogeny, underwent αß TCR-mediated positive selection into CD4+ or CD8+ thymocytes, and constituted up to 10% of TCRδ+ cells in lymphoid organs. They expressed high levels of IL-1R1 and IL-23R and secreted IFN-γ, IL-17, and GM-CSF in response to canonically restricted peptide antigens or stimulation with IL-1ß and IL-23. Hybrid αß-γδ T cells were transcriptomically distinct from conventional γδ T cells and displayed a hyperinflammatory phenotype enriched for chemokine receptors and homing molecules that facilitate migration to sites of inflammation. These proinflammatory T cells promoted bacterial clearance after infection with Staphylococcus aureus and, by licensing encephalitogenic Th17 cells, played a key role in the development of autoimmune disease in the central nervous system.


Subject(s)
Inflammation/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , Animals , Biomarkers/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Inflammation/pathology , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Phenotype , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, gamma-delta/genetics , Staphylococcal Infections/immunology , Staphylococcus aureus/physiology , Transcription, Genetic , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...