Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496522

ABSTRACT

The kidney functions as a finely tuned sensor to balance body fluid composition and filter out waste through complex coordinated mechanisms. This versatility requires tight neural control, with innervating efferent nerves playing a crucial role in regulating blood flow, glomerular filtration rate, water and sodium reabsorption, and renin release. In turn sensory afferents provide feedback to the central nervous system for the modulation of cardiovascular function. However, the cells targeted by sensory afferents and the physiological sensing mechanisms remain poorly characterized. Moreover, how the kidney is innervated during development to establish these functions remains elusive. Here, we utilized a combination of light-sheet and confocal microscopy to generate anatomical maps of kidney sensory and sympathetic nerves throughout development and resolve the establishment of functional crosstalk. Our analyses revealed that kidney innervation initiates at embryonic day (E)13.5 as the nerves associate with vascular smooth muscle cells and follow arterial differentiation. By E17.5 axonal projections associate with kidney structures such as glomeruli and tubules and the network continues to expand postnatally. These nerves are synapsin I-positive, highlighting ongoing axonogenesis and the potential for functional crosstalk. We show that sensory and sympathetic nerves innervate the kidney concomitantly and classify the sensory fibers as calcitonin gene related peptide (CGRP)+, substance P+, TRPV1+, and PIEZO2+, establishing the presence of PIEZO2 mechanosensory fibers in the kidney. Using retrograde tracing, we identified the primary dorsal root ganglia, T10-L2, from which PIEZO2+ sensory afferents project to the kidney. Taken together our findings elucidate the temporality of kidney innervation and resolve the identity of kidney sympathetic and sensory nerves.

2.
Compr Physiol ; 14(1): 5325-5343, 2023 12 29.
Article in English | MEDLINE | ID: mdl-38158367

ABSTRACT

Red blood cell (RBC) trapping describes the accumulation of RBCs in the microvasculature of the kidney outer medulla that occurs following ischemic acute kidney injury (AKI). Despite its prominence in human kidneys following AKI, as well as evidence from experimental models demonstrating that the severity of RBC trapping is directly correlated with renal recovery, to date, RBC trapping has not been a primary focus in understanding the pathogenesis of ischemic kidney injury. New evidence from rodent models suggests that RBC trapping is responsible for much of the tubular injury occurring in the initial hours after kidney reperfusion from ischemia. This early injury appears to result from RBC cytotoxicity and closely reflects the injury profile observed in human kidneys, including sloughing of the medullary tubules and the formation of heme casts in the distal tubules. In this review, we discuss what is currently known about RBC trapping. We conclude that RBC trapping is likely avoidable. The primary causes of RBC trapping are thought to include rheologic alterations, blood coagulation, tubular cell swelling, and increased vascular permeability; however, new data indicate that a mismatch in blood flow between the cortex and medulla where medullary perfusion is maintained during cortical ischemia is also likely critical. The mechanism(s) by which RBC trapping contributes to renal functional decline require more investigation. We propose a renewed focus on the mechanisms mediating RBC trapping, and RBC trapping-associated injury is likely to provide important knowledge for improving AKI outcomes. © 2024 American Physiological Society. Compr Physiol 14:5325-5343, 2024.


Subject(s)
Acute Kidney Injury , Kidney , Humans , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Ischemia , Erythrocytes/physiology
3.
Function (Oxf) ; 4(6): zqad050, 2023.
Article in English | MEDLINE | ID: mdl-37753180

ABSTRACT

Red blood cell (RBC) trapping is common in ischemic acute kidney injury (AKI) and presents as densely packed RBCs that accumulate within and engorge the kidney medullary circulation. In this study, we tested the hypothesis that "RBC trapping directly promotes tubular injury independent of extending ischemia time." Studies were performed on rats. Red blood cell congestion and tubular injury were compared between renal arterial clamping, venous clamping, and venous clamping of blood-free kidneys. Vessels were occluded for either 15 or 45 min with and without reperfusion. We found that RBC trapping in the medullary capillaries occurred rapidly following reperfusion from renal arterial clamping and that this was associated with extravasation of blood from congested vessels, uptake of blood proteins by the tubules, and marked tubular injury. To determine if this injury was due to blood toxicity or an extension of ischemia time, we compared renal venous and arterial clamping without reperfusion. Venous clamping resulted in RBC trapping and marked tubular injury within 45 min of ischemia. Conversely, despite the same ischemia time, RBC trapping and tubular injury were minimal following arterial clamping without reperfusion. Confirming the role of blood toward tubular injury, injury was markedly reduced in blood-free kidneys with venous clamping. Our data demonstrate that RBC trapping results in the rapid extravasation and uptake of blood components by tubular cells, causing toxic tubular injury. Tubular toxicity from extravasation of blood following RBC trapping appears to be a major component of tubular injury in ischemic AKI, which has not previously been recognized.


Subject(s)
Acute Kidney Injury , Vascular System Injuries , Animals , Rats , Erythrocytes , Kidney , Ischemia
4.
J Am Soc Nephrol ; 33(4): 769-785, 2022 04.
Article in English | MEDLINE | ID: mdl-35115326

ABSTRACT

BACKGROUND: Vascular congestion of the renal medulla-trapped red blood cells in the medullary microvasculature-is a hallmark finding at autopsy in patients with ischemic acute tubular necrosis. Despite this, the pathogenesis of vascular congestion is not well defined. METHODS: In this study, to investigate the pathogenesis of vascular congestion and its role in promoting renal injury, we assessed renal vascular congestion and tubular injury after ischemia reperfusion in rats pretreated with low-dose LPS or saline (control). We used laser Doppler flowmetry to determine whether pretreatment with low-dose LPS prevented vascular congestion by altering renal hemodynamics during reperfusion. RESULTS: We found that vascular congestion originated during the ischemic period in the renal venous circulation. In control animals, the return of blood flow was followed by the development of congestion in the capillary plexus of the outer medulla and severe tubular injury early in reperfusion. Laser Doppler flowmetry indicated that blood flow returned rapidly to the medulla, several minutes before recovery of full cortical perfusion. In contrast, LPS pretreatment prevented both the formation of medullary congestion and its associated tubular injury. Laser Doppler flowmetry in LPS-pretreated rats suggested that limiting early reperfusion of the medulla facilitated this protective effect, because it allowed cortical perfusion to recover and clear congestion from the large cortical veins, which also drain the medulla. CONCLUSIONS: Blockage of the renal venous vessels and a mismatch in the timing of cortical and medullary reperfusion results in congestion of the outer medulla's capillary plexus and promotes early tubular injury after renal ischemia. These findings indicate that hemodynamics during reperfusion contribute to the renal medulla's susceptibility to ischemic injury.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Animals , Humans , Ischemia/complications , Kidney/pathology , Kidney Medulla/blood supply , Lipopolysaccharides , Rats , Renal Circulation/physiology , Reperfusion/adverse effects , Reperfusion Injury/complications , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...