Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Curr Microbiol ; 81(7): 177, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758473

ABSTRACT

The purpose of this study was to determine if orangutans (Pongo spp.) living in captivity at a zoo in Wisconsin were colonized with antimicrobial-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to their resistant phenotypes. We hypothesize that since antimicrobial-resistant bacteria are so prevalent within humans, the animals could also be carriers of such strains given the daily contact between the animals and the zoo staff that care for them. To test this theory, fecal samples from two orangutans were examined for resistant bacteria by inoculation on HardyCHROM™ ESBL and HardyCHROM™ CRE agars. Isolates were identified using MALDI-TOF mass spectrometry and antimicrobial susceptibility testing was performed using a Microscan autoSCAN-4 System. An isolate was selected for additional characterization, including whole genome sequencing (WGS). Using the Type (Strain) Genome Server (TYGS) the bacterium was identified as Escherichia coli. The sequence type identified was (ST/phylogenetic group/ß-lactamase): ST6448/B1/CTX-M-55.


Subject(s)
Escherichia coli Infections , Escherichia coli , Feces , beta-Lactamases , Animals , Animals, Zoo/microbiology , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Feces/microbiology , Genome, Bacterial , Microbial Sensitivity Tests , Phylogeny , Whole Genome Sequencing , Wisconsin
2.
medRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496498

ABSTRACT

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

3.
Microbiol Resour Announc ; 13(3): e0108123, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38334401

ABSTRACT

We report genome sequences of two new isolates of the budding yeast Candida zeylanoides. Strain UCD849 from soil in Ireland was assembled into eight complete chromosomes. Strain AWD from an African Wild Dog in a US zoo was sequenced to draft level. The assemblies are 10.6 Mb and 99.57% identical.

4.
EMBO J ; 43(1): 112-131, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177314

ABSTRACT

Transposable elements have created the majority of the sequence in many genomes. In mammals, LINE-1 retrotransposons have been expanding for more than 100 million years as distinct, consecutive lineages; however, the drivers of this recurrent lineage emergence and disappearance are unknown. Most human genome assemblies provide a record of this ancient evolution, but fail to resolve ongoing LINE-1 retrotranspositions. Utilizing the human CHM1 long-read-based haploid assembly, we identified and cloned all full-length, intact LINE-1s, and found 29 LINE-1s with measurable in vitro retrotransposition activity. Among individuals, these LINE-1s varied in their presence, their allelic sequences, and their activity. We found that recently retrotransposed LINE-1s tend to be active in vitro and polymorphic in the population relative to more ancient LINE-1s. However, some rare allelic forms of old LINE-1s retain activity, suggesting older lineages can persist longer than expected. Finally, in LINE-1s with in vitro activity and in vivo fitness, we identified mutations that may have increased replication in ancient genomes and may prove promising candidates for mechanistic investigations of the drivers of LINE-1 evolution and which LINE-1 sequences contribute to human disease.


Subject(s)
Genome, Human , Long Interspersed Nucleotide Elements , Animals , Humans , Long Interspersed Nucleotide Elements/genetics , Retroelements , Mammals/genetics , Mutation , Evolution, Molecular
5.
Int. microbiol ; 26(4): 1001-1007, Nov. 2023. ilus, graf
Article in English | IBECS | ID: ibc-227487

ABSTRACT

Ingesting marine plastics is increasingly common in cetaceans, but little is known about their potential effects. Here, by utilizing 16S rRNA gene sequencing, we profiled the intestinal bacterial communities of a stranded Risso’s dolphin (Grampus griseus) which died because of the ingestion of rubber gloves. In this study, we explored the potential relationships between starvation raised by plastic ingestion with the dolphin gut microbiota. Our results showed significant differences in bacterial diversity and composition among the different anatomical areas along the intestinal tract, which may be related to the intestinal emptying process under starvation. In addition, the intestinal bacterial composition of the Risso’s dolphin showed both similarity and divergence to that of other toothed whales, suggesting potential roles of both host phylogeny and habitat shaping of the cetacean intestinal microbiome. Perhaps, the microbiota is reflecting a potentially disordered intestinal microbial profile caused by the ingestion of macro-plastics which led to starvation. Moreover, two operational taxonomic units (0.17% of the total reads) affiliated with Actinobacillus and Acinetobacter lwoffii were detected along the intestinal tract. These bacterial species may cause infections in immunocompromised dolphins which are malnourished. This preliminary study profiles the intestinal microbiota of a Risso’s dolphin, and provides an additional understanding of the potential relationships between starvation raised by ingesting macro-plastics with cetacean gut microbiota.(AU)


Subject(s)
Animals , Gastrointestinal Microbiome , Dolphins/microbiology , RNA, Ribosomal, 16S/genetics , Starvation , Plastics , Actinobacillus Infections , Microbiology , Microbiological Techniques , Cetacea/metabolism
6.
PLoS Genet ; 19(10): e1010972, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37812589

ABSTRACT

Reduced activity of the enzymes encoded by PHGDH, PSAT1, and PSPH causes a set of ultrarare, autosomal recessive diseases known as serine biosynthesis defects. These diseases present in a broad phenotypic spectrum: at the severe end is Neu-Laxova syndrome, in the intermediate range are infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end is childhood disease with intellectual disability. However, L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms. Therefore, knowledge of pathogenic variants can improve clinical outcomes. Here, we use a yeast-based assay to individually measure the functional impact of 1,914 SNV-accessible amino acid substitutions in PSAT. Results of our assay agree well with clinical interpretations and protein structure-function relationships, supporting the inclusion of our data as functional evidence as part of the ACMG variant interpretation guidelines. We use existing ClinVar variants, disease alleles reported in the literature and variants present as homozygotes in the primAD database to define assay ranges that could aid clinical variant interpretation for up to 98% of the tested variants. In addition to measuring the functional impact of individual variants in yeast haploid cells, we also assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results from our diploid assay successfully distinguish the genotypes of affected individuals from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements to predict the biallelic function of ~1.8 million allele combinations corresponding to potential human genotypes. Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of ultrarare diseases.


Subject(s)
Brain Diseases , Microcephaly , Humans , Child , Saccharomyces cerevisiae/genetics , Brain Diseases/genetics , Microcephaly/genetics , Genotype , Serine
7.
Article in English | MEDLINE | ID: mdl-37535055

ABSTRACT

A facultative anaerobic, Gram-stain-negative rod-shaped bacterium, designated RT, was isolated from the faecal material of a rabbit (Sylvilagus floridanus). The strain could not be identified using an MALDI Biotyper sirius CA System. The closest matches based on the Bruker library were members of the genera Citrobacter and Pantoea. However, the score value was in the range of no organism identification possible. Based on pairwise of 16S rRNA gene sequence analysis, the isolate was found to be a member of the family Erwiniaceae. The highest sequence similarities were found to the sequences of Pantoea rodasii LMG 26273T (98.7 %), Leclercia adecarboxylata NBRC 102595T (98.5 %) and Enterobacter huaxiensis 090008T (98.4 %). Phylogenetic and whole genome analysis demonstrated that strain RT represents a novel species within the genus Pantoea. The predominant cellular fatty acids of strain RT were C16 : 0 and products present in summed feature 2 (C12 : 0) aldehyde, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). In silico genome analysis showed the presence of enzymes required for production of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine. The G+C content determined from the genome was 54.94 mol %. Based on biochemical, phylogenetic, genotypic and chemotaxonomic criteria, the isolate represents a novel species of the genus Pantoea for which the name Pantoea leporis sp. nov. is proposed. The type strain is strain RT (=CCUG 76269T=ATCC TSD-291T).


Subject(s)
Fatty Acids , Pantoea , Animals , Rabbits , Fatty Acids/chemistry , Phospholipids/chemistry , Pantoea/genetics , Ubiquinone/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques
8.
Sensors (Basel) ; 23(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050572

ABSTRACT

Small uncrewed aerial systems (sUASs) have the potential to serve as ideal platforms for high spatial and temporal resolution wildfire measurements to complement aircraft and satellite observations, but typically have very limited payload capacity. Recognizing the need for improved data from wildfire management and smoke forecasting communities and the potential advantages of sUAS platforms, the Nighttime Fire Observations eXperiment (NightFOX) project was funded by the US National Oceanic and Atmospheric Administration (NOAA) to develop a suite of miniaturized, relatively low-cost scientific instruments for wildfire-related measurements that would satisfy the size, weight and power constraints of a sUAS payload. Here we report on a remote sensing system developed under the NightFOX project that consists of three optical instruments with five individual sensors for wildfire mapping and fire radiative power measurement and a GPS-aided inertial navigation system module for aircraft position and attitude determination. The first instrument consists of two scanning telescopes with infrared (IR) channels using narrow wavelength bands near 1.6 and 4 µm to make fire radiative power measurements with a blackbody equivalent temperature range of 320-1500 °C. The second instrument is a broadband shortwave (0.95-1.7 µm) IR imager for high spatial resolution fire mapping. Both instruments are custom built. The third instrument is a commercial off-the-shelf visible/thermal IR dual camera. The entire system weighs about 1500 g and consumes approximately 15 W of power. The system has been successfully operated for fire observations using a Black Swift Technologies S2 small, fixed-wing UAS for flights over a prescribed grassland burn in Colorado and onboard an NOAA Twin Otter crewed aircraft over several western US wildfires during the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field mission.

9.
Int Microbiol ; 26(4): 1001-1007, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37059916

ABSTRACT

Ingesting marine plastics is increasingly common in cetaceans, but little is known about their potential effects. Here, by utilizing 16S rRNA gene sequencing, we profiled the intestinal bacterial communities of a stranded Risso's dolphin (Grampus griseus) which died because of the ingestion of rubber gloves. In this study, we explored the potential relationships between starvation raised by plastic ingestion with the dolphin gut microbiota. Our results showed significant differences in bacterial diversity and composition among the different anatomical areas along the intestinal tract, which may be related to the intestinal emptying process under starvation. In addition, the intestinal bacterial composition of the Risso's dolphin showed both similarity and divergence to that of other toothed whales, suggesting potential roles of both host phylogeny and habitat shaping of the cetacean intestinal microbiome. Perhaps, the microbiota is reflecting a potentially disordered intestinal microbial profile caused by the ingestion of macro-plastics which led to starvation. Moreover, two operational taxonomic units (0.17% of the total reads) affiliated with Actinobacillus and Acinetobacter lwoffii were detected along the intestinal tract. These bacterial species may cause infections in immunocompromised dolphins which are malnourished. This preliminary study profiles the intestinal microbiota of a Risso's dolphin, and provides an additional understanding of the potential relationships between starvation raised by ingesting macro-plastics with cetacean gut microbiota.


Subject(s)
Dolphins , Gastrointestinal Microbiome , Animals , RNA, Ribosomal, 16S/genetics , Eating
10.
Curr Microbiol ; 80(3): 93, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36729340

ABSTRACT

Stenotrophomonas maltophilia is a ubiquitous multidrug-resistant opportunistic pathogen commonly associated with nosocomial infections. The purpose of this study was to isolate and characterize extended-spectrum beta-lactamase (ESBL) producing bacteria from painted turtles (Chrysemys picta) living in the wild and captured in southeastern Wisconsin. Fecal samples from ten turtles were examined for ESBL producing bacteria after incubation on HardyCHROM™ ESBL agar. Two isolates were cultivated and identified by 16S rRNA gene sequencing and whole genome sequencing (WGS) as Stenotrophomonas sp. 9A and S. maltophilia 15A. They were multidrug-resistant, as determined by antibiotic susceptibility testing. Stenotrophomonas sp. 9A was found to produce an extended spectrum beta-lactamase (ESBL) and both isolates were found to be carbapenem-resistant. EDTA-modified carbapenem inactivation method (eCIM) and the modified carbapenem inactivation method (mCIM) tests were used to examine the carbapenemase production and the test results were negative. Through WGS several antimicrobial resistance genes were identified in S. maltophilia 15A. For example a chromosomal L1 ß-lactamase gene, which is known to hydrolyze carbapenems, a L2 ß-lactamase gene, genes for the efflux systems smeABC and smeDEF and the aminoglycosides resistance genes aac(6')-lz and aph(3')-llc were found. An L2 ß-lactamase gene in Stenotrophomonas sp. 9A was identified through WGS.


Subject(s)
Drug Resistance, Multiple, Bacterial , Stenotrophomonas , Turtles , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Carbapenems , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Stenotrophomonas/drug effects , Stenotrophomonas/genetics , Turtles/microbiology
11.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36711904

ABSTRACT

Background: Pathogenic variants in PHGDH, PSAT1 , and PSPH cause a set of rare, autosomal recessive diseases known as serine biosynthesis defects. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately in the form of infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, as childhood disease with intellectual disability. However, because L-serine supplementation, especially if started early, can ameliorate and in some cases even prevent symptoms, knowledge of pathogenic variants is highly actionable. Methods: Recently, our laboratory established a yeast-based assay for human PSAT1 function. We have now applied it at scale to assay the functional impact of 1,914 SNV-accessible amino acid substitutions. In addition to assaying the functional impact of individual variants in yeast haploid cells, we can assay pairwise combinations of PSAT1 alleles that recapitulate human genotypes, including compound heterozygotes, in yeast diploids. Results: Results of our assays of individual variants (in haploid yeast cells) agree well with clinical interpretations and protein structure-function relationships, supporting the use of our data as functional evidence under the ACMG interpretation guidelines. Results from our diploid assay successfully distinguish patient genotypes from those of healthy carriers and agree well with disease severity. Finally, we present a linear model that uses individual allele measurements (in haploid yeast cells) to accurately predict the biallelic function (in diploid yeast cells) of ~ 1.8 million allele combinations corresponding to potential human genotypes. Conclusions: Taken together, our work provides an example of how large-scale functional assays in model systems can be powerfully applied to the study of a rare disease.

12.
Int. microbiol ; 26(1): 135-142, Ene. 2023. tab
Article in English | IBECS | ID: ibc-215923

ABSTRACT

Robinsoniella peoriensis is a Gram-positive bacterium which is anaerobic, spore-forming, and non-motile. It was initially isolated and characterized from feces and swine manure. Strains of this species have since been identified from different mammalian and non-mammalian gastrointestinal tracts. Strains have also been isolated from a variety of human infections, such as bacteremia, bone infections, and skin structures. R. peoriensis has recently been reported as causative for pyometra, which could result in death in the absence of sufficient antimicrobial treatment. However, to the author’s knowledge, there has not been a single virulence factor identified. A major challenge of modern medicine is the failure of conventional procedures to characterize the capability of an emerging pathogen to cause disease. The goal of this study is to initially characterize the pathogenicity of this bacterium using a pathogenomics approach.(AU)


Subject(s)
Humans , Virulence Factors , Gram-Positive Bacteria , Virulence , Microbiology
13.
Int Microbiol ; 26(1): 135-142, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36219351

ABSTRACT

Robinsoniella peoriensis is a Gram-positive bacterium which is anaerobic, spore-forming, and non-motile. It was initially isolated and characterized from feces and swine manure. Strains of this species have since been identified from different mammalian and non-mammalian gastrointestinal tracts. Strains have also been isolated from a variety of human infections, such as bacteremia, bone infections, and skin structures. R. peoriensis has recently been reported as causative for pyometra, which could result in death in the absence of sufficient antimicrobial treatment. However, to the author's knowledge, there has not been a single virulence factor identified. A major challenge of modern medicine is the failure of conventional procedures to characterize the capability of an emerging pathogen to cause disease. The goal of this study is to initially characterize the pathogenicity of this bacterium using a pathogenomics approach.


Subject(s)
Clostridiales , Virulence Factors , Humans , Animals , Swine , Virulence Factors/genetics , Gram-Positive Bacteria , Feces/microbiology , Mammals
14.
J Shoulder Elbow Surg ; 32(4): e160-e167, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36347400

ABSTRACT

BACKGROUND: Although there is a trend to manage failed anatomic total shoulder arthroplasties (aTSA) with revision to a reverse total shoulder arthroplasty, such revisions can be complicated by difficulties in baseplate fixation, instability, and acromial stress fractures. Some cases of failed aTSA may be safely revised to a hemiarthroplasty (HA). The objectives of this study were to report patient-reported outcomes after conversion from aTSA to HA and assess patient and shoulder characteristics associated with a successful outcome. METHODS: Patients who underwent revision from aTSA to HA between 2009 and 2018 were contacted. Patient demographics, surgical history, intraoperative findings, and microbiology results were collected. Patient-reported outcomes were collected with minimum 2-year follow-up. Preoperative radiographic characteristics were reviewed for component positioning and component loosening. Patients with a clinically significant improvement exceeding the minimal clinically important difference (MCID) of the Simple Shoulder Test (SST) were compared with those patients who did not improve past the MCID. RESULTS: Twenty-nine patients underwent conversion from aTSA to HA with a mean follow-up of 4.5 ± 1.8 years. Intraoperative glenoid or humeral component loosening was found in all 29 patients. Pain improved in 25 of 30 patients (87%), and mean pain scores improved from 6.2 ± 2.3 to 3.1 ± 2.4 (P < .001). SST scores improved from 4.1 ± 3.1 to 7.3 ± 3.2 (P < .001), and 18 of 29 patients (62%) had improvement above the SST MCID threshold of 2.4. The mean American Shoulder and Elbow Surgeons score at the latest follow-up was 64 ± 19, and the Single Assessment Numeric Evaluation score was 65 ± 23. Twenty-two of 29 (76%) patients were satisfied with the procedure. Four patients (14%) required conversion to total shoulder arthroplasty-2 to anatomic and 2 to reverse. An additional 3 patients (10%) had a revision HA performed. No significant differences in patient or shoulder characteristics were found in those patients who improved greater than the MCID of the SST compared patients who improved less than the MCID of the SST. Fifty-nine percent of patients had ≥2 positive cultures with the same bacteria, and 82% of these were with Cutibacterium. Seven of 8 patients (88%) with a loose humeral component had ≥2 positive cultures with the same bacteria. DISCUSSION: Component loosening is a common failure mode after aTSA. Revision to HA can improve pain and patient-reported outcomes in most patients.


Subject(s)
Arthroplasty, Replacement, Shoulder , Hemiarthroplasty , Shoulder Joint , Humans , Arthroplasty, Replacement, Shoulder/adverse effects , Hemiarthroplasty/adverse effects , Shoulder Joint/diagnostic imaging , Shoulder Joint/surgery , Follow-Up Studies , Treatment Outcome , Pain/etiology , Retrospective Studies , Range of Motion, Articular , Reoperation
15.
Data Brief ; 45: 108685, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36425977

ABSTRACT

In this present article the draft sequence data for Clostridium perfringens FA, which was isolated from the faecal material of a critically endangered African Wild dog, is reported. The bacterium is widely distributed in the environment and in the normal intestinal flora of humans and animals. The genome of strain C. perfringens FA was assembled into 21 contigs with a total length of 3, 044, 349 bp and a GC content of 28.20%. There are 2742 CDS, 70 tRNAs and 5 rRNAs. Five putative virulence genes were detected. There were no plasmid replicons found. The genome of few environmental isolates has been sequenced. The draft genome of strain FA can be compared to disease causing isolates cultured from humans to aid in a better understanding of the pathogenesis of the bacterium.

16.
Science ; 378(6618): 356-357, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36302006

ABSTRACT

The human genome contains a domesticated viral envelope gene with antiviral activity.


Subject(s)
Betaretrovirus , Genes, env , Genome, Human , Pregnancy Proteins , Humans , Betaretrovirus/genetics , Pregnancy Proteins/genetics
17.
Front Microbiol ; 13: 972243, 2022.
Article in English | MEDLINE | ID: mdl-36118197

ABSTRACT

Understanding the distribution patterns and shaping factors of bacterial pathogens in aquatic ecosystems, especially in natural waters, are critical to the control of pathogen transmission. In this study, using 16S rRNA gene amplicon sequencing, we explored the composition and biogeographic dynamics of potential bacterial pathogens in the middle and lower reaches of the Yangtze River, as well as its two vast adjoining lakes (Dongting Lake and Poyang Lake). The pathogen community belonged to 12 potential pathogenic groups, with "intracellular parasites," "animal parasites or symbionts" and "human pathogens all" occupying 97.5% in total. The potential pathogen community covered seven phyla with Proteobacteria (69.8%) and Bacteroidetes (13.5%) the most predominant. In addition, 53 genera were identified with Legionella (15.2%) and Roseomonas (14.2%) the most dominant. The average relative abundance, alpha diversity and microbial composition of the potential bacterial pathogens exhibited significant biogeographical variations among the different sections. An in-depth analysis reflected that environmental variables significantly structured the potential bacterial pathogens, including water physiochemical properties (i.e., chlorophyll-a, total nitrogen and transparency), heavy metals (i.e., As and Ni), climate (i.e., air temperature) and land use type (i.e., waters). Compared to the overall bacterial community which was composed of both pathogenic and non-pathogenic bacteria, the pathogen community exhibited distinct microbial diversity patterns and shaping factors. This signifies the importance of different variables for shaping the pathogen community. This study represents one attempt to explore pathogen diversity patterns and their underlying drivers in the Yangtze River, which provides a foundation for the management of pathogenic bacteria.

18.
J Environ Qual ; 51(6): 1222-1234, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35989580

ABSTRACT

Amending soils with compost has become increasingly common in stormwater management practices. Compost can be a source and sink for nutrients and heavy metals, and it is important to understand the effect of compost on pollutant leaching under different hydrologic conditions. The objectives of this study were (a) to quantify the distribution coefficient (Kd ) of PO4 -P and metals (Cd, Cr, Cu, Ni, Pb, Zn) for compost-soil blends and (b) to examine how compost rate alters leaching patterns of nutrients (NH4 -N, NO3 -N, PO4 -P) and metals from compost-soil blends. Material consisted of a sandy loam subsoil, a yard-waste compost, and compost-soil blends at 20 or 50% compost by volume. Materials were tested in sorption-desorption experiments using simulated stormwater (SW); columns with the materials were also leached with either SW or deionized (DI) water. As compost rate increased, the Kd decreased for PO4 -P and Cr but increased for Cd, Cu, Ni, and Zn. The addition of compost reduced the sorption of PO4 -P and Cr, potentially making it a source of these pollutants. Simulated stormwater did not increase the amount of pollutants retained compared with DI water for compost blends, except for 100% compost columns. Nitrate was the only constituent that had a negative removal efficiency, suggesting the compost was a source of NO3 -N. Column media retained >70% of the metals from the added stormwater solution. These results suggest that yard-waste compost blends at ≤50% have the potential to retain certain pollutants from infiltrating stormwater, but this effect may decline after several storm events.


Subject(s)
Composting , Environmental Pollutants , Metals, Heavy , Cadmium , Nutrients , Soil , Water , Rain
19.
Arch Microbiol ; 204(7): 361, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35662380

ABSTRACT

This is a culture-dependent study with the objective of pure culturing and characterizing pathogenic bacteria from the blowhole, lung, stomach and fecal samples of a neonatal crucially endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) that died 27 days after birth. Bacteria were inoculated using a swab onto blood and MacConkey agar plates and representative isolates were identified through 16S rRNA gene sequence analysis. A total of three Clostridium perfringens type C strains from the fecal samples were isolated. Toxin genes, including cpa, cpb and cpb2, were detected by PCR amplification, whereas the etx, iap and cpe genes were not detected. Biofilm formation of the three strains was then examined. Only one strain was capable of biofilm formation. In addition, isolates showed strong resistance against the antibiotics amikacin (3/3), erythromycin (1/3), gentamicin (3/3), streptomycin (3/3), and trimethoprim (3/3), while sensitivity to ampicillin (3/3), bacitracin (3/3), erythromycin (2/3), penicillin G (3/3), and tetracycline (3/3). The results suggested C. perfringens type C could have contributed to the death of this neonatal porpoise.


Subject(s)
Porpoises , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Biofilms , Clostridium perfringens/genetics , Erythromycin , Genotype , Porpoises/genetics , Porpoises/microbiology , RNA, Ribosomal, 16S/genetics
20.
Microbiol Resour Announc ; 11(7): e0040522, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35727020

ABSTRACT

Here, we report the draft genome sequence of Paenibacillus odorifer strain V, which was isolated from the fecal material of a rabbit living in the wild. The genome size is 6,863,583 bp, with 44.35 mol% G+C content.

SELECTION OF CITATIONS
SEARCH DETAIL
...