Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroendocrinol ; : e13365, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200690

ABSTRACT

The neuroendocrinology of vocal learning is exceptionally well known in passerine songbirds. Despite huge life history, genetic and ecological variation across passerines, song learning tends to occur as a result of rises in gonadal and non-gonadal sex steroids that shape telencephalic vocal control circuits and song. Parrots are closely related but independently evolved different cerebral circuits for vocal repertoire acquisition in both sexes that serve a broader suite of social functions and do not appear to be shaped by early androgens or estrogens; instead, parrots begin a plastic phase in vocal development at an earlier life history stage that favors the growth, maturation, and survival functions of corticosteroids. As evidence, corticosterone (CORT) supplements given to wild green-rumped parrotlets (Forpus passerinus) during the first week of vocal babbling resulted in larger vocal repertoires in both sexes in the remaining days before fledging. Here, we replicate this experiment but began treatment 1 week before in development, analyzing both experiments in one model and a stronger test of the organizational effects of CORT on repertoire acquisition. Early CORT treatment resulted in significantly larger repertoires compared to late treatment. Both treatment groups showed weak negative effects on the early, reduplicated stage of babbling and strong, positive effects of CORT on the later, variegated stage. Results are consistent with more formative effects of corticosteroids at earlier developmental stages and a role of the hypothalamic-pituitary-adrenal axis (HPA) in vocal repertoire acquisition. Given the early emergence of speech in human ontogeny, parrots are a promising model for understanding the putative role of the HPA axis in the construction of neural circuits that support language acquisition.

2.
Adv Child Dev Behav ; 65: 99-134, 2023.
Article in English | MEDLINE | ID: mdl-37481302

ABSTRACT

One of the most important challenges for a developing infant is learning how best to allocate their attention and forage for information in the midst of a great deal of novel stimulation. We propose that infants of altricial species solve this challenge by learning selectively from events that are contingent on their immature behavior, such as babbling. Such a contingency filter would focus attention and learning on the behavior of social partners, because social behavior reliably fits infants' sensitivity to contingency. In this way a contingent response by a caregiver to an immature behavior becomes a source of learnable information - feedback - to the infant. Social interactions with responsive caregivers afford infants opportunities to explore the impacts of their immature behavior on their environment, which facilitates the development of socially guided learning. Furthermore, contingent interactions are opportunities to make and test predictions about the efficacy of their social behaviors and those of others. In this chapter, we will use prelinguistic vocal learning to exemplify how infants use their developing vocal abilities to elicit learnable information about language from their social partners. Specifically, we review how caregivers' contingent responses to babbling create information that facilitates infant vocal learning and drives the development of communication. Infants play an active role in this process, as their developing predictions about the consequences of their actions serve to further refine their allocation of attention and drive increases in the maturity of their vocal behavior.


Subject(s)
Exploratory Behavior , Language Development , Humans , Infant , Feedback , Language , Communication , Speech Disorders
3.
Function (Oxf) ; 2(5): zqab037, 2021.
Article in English | MEDLINE | ID: mdl-34423304

ABSTRACT

Articular cartilage is a dense extracellular matrix-rich tissue that degrades following chronic mechanical stress, resulting in osteoarthritis (OA). The tissue has low intrinsic repair especially in aged and osteoarthritic joints. Here, we describe three pro-regenerative factors; fibroblast growth factor 2 (FGF2), connective tissue growth factor, bound to transforming growth factor-beta (CTGF-TGFß), and hepatoma-derived growth factor (HDGF), that are rapidly released from the pericellular matrix (PCM) of articular cartilage upon mechanical injury. All three growth factors bound heparan sulfate, and were displaced by exogenous NaCl. We hypothesised that sodium, sequestered within the aggrecan-rich matrix, was freed by injurious compression, thereby enhancing the bioavailability of pericellular growth factors. Indeed, growth factor release was abrogated when cartilage aggrecan was depleted by IL-1 treatment, and in severely damaged human osteoarthritic cartilage. A flux in free matrix sodium upon mechanical compression of cartilage was visualised by 23Na -MRI just below the articular surface. This corresponded to a region of reduced tissue stiffness, measured by scanning acoustic microscopy and second harmonic generation microscopy, and where Smad2/3 was phosphorylated upon cyclic compression. Our results describe a novel intrinsic repair mechanism, controlled by matrix stiffness and mediated by the free sodium concentration, in which heparan sulfate-bound growth factors are released from cartilage upon injurious load. They identify aggrecan as a depot for sequestered sodium, explaining why osteoarthritic tissue loses its ability to repair. Treatments that restore matrix sodium to allow appropriate release of growth factors upon load are predicted to enable intrinsic cartilage repair in OA. SIGNIFICANCE STATEMENT: Osteoarthritis is the most prevalent musculoskeletal disease, affecting 250 million people worldwide.1 We identify a novel intrinsic repair response in cartilage, mediated by aggrecan-dependent sodium flux, and dependent upon matrix stiffness, which results in the release of a cocktail of pro-regenerative growth factors after injury. Loss of aggrecan in late-stage osteoarthritis prevents growth factor release and likely contributes to disease progression. Treatments that restore matrix sodium in osteoarthritis may recover the intrinsic repair response to improve disease outcome.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Aged , Aggrecans/metabolism , Sodium/metabolism , Osteoarthritis/metabolism , Cartilage, Articular/injuries , Transforming Growth Factor beta/metabolism , Heparitin Sulfate/metabolism
4.
Am J Primatol ; 82(2): e23096, 2020 02.
Article in English | MEDLINE | ID: mdl-31976575

ABSTRACT

Across the globe, primates are threatened by human activities. This is especially true for species found in tropical dry forests, which remain largely unprotected. Our ability to predict primate abundance in the face of human activity depends on different species' sensitivities as well as on the characteristics of the forest itself. We studied plant and primate distribution and abundance in the Taboga Forest, a 516-ha tropical dry forest surrounded by agricultural fields in northwestern Costa Rica. We found that the density of white-faced capuchins (Cebus capucinus) at Taboga is 2-6 times higher than reported for other long-term white-faced capuchin sites. Using plant transects, we also found relatively high species richness, diversity, and equitability compared with other tropical dry forests. Edge transects (i.e., within 100 m from the forest boundary) differed from interior transects in two ways: (a) tree species associated with dry forest succession were well-established in the edge and (b) canopy cover in the edge was maintained year-round, while the interior forest was deciduous. Sighting rates for capuchins were higher near water sources but did not vary between the edge and interior forest. For comparison, we also found the same to be true for the only other primate in the Taboga Forest, mantled howler monkeys (Alouatta palliata). Year-round access to water might explain why some primate species can flourish even alongside anthropogenic disturbance. Forest fragments like Taboga may support high densities of some species because they provide a mosaic of habitats and key resources that buffer adverse ecological conditions.


Subject(s)
Cebus capucinus/physiology , Ecosystem , Animals , Biodiversity , Costa Rica , Female , Forests , Male , Plants , Population Density
5.
Ann Rheum Dis ; 77(9): 1372-1380, 2018 09.
Article in English | MEDLINE | ID: mdl-29925506

ABSTRACT

OBJECTIVES: One mechanism by which cartilage responds to mechanical load is by releasing heparin-bound growth factors from the pericellular matrix (PCM). By proteomic analysis of the PCM, we identified connective tissue growth factor (CTGF) and here investigate its function and mechanism of action. METHODS: Recombinant CTGF (rCTGF) was used to stimulate human chondrocytes for microarray analysis. Endogenous CTGF was investigated by in vitro binding assays and confocal microscopy. Its release from cut cartilage (injury CM) was analysed by Western blot under reducing and non-reducing conditions. A postnatal, conditional CtgfcKO mouse was generated for cartilage injury experiments and to explore the course of osteoarthritis (OA) by destabilisation of the medial meniscus. siRNA knockdown was performed on isolated human chondrocytes. RESULTS: The biological responses of rCTGF were TGFß dependent. CTGF displaced latent TGFß from cartilage and both were released on cartilage injury. CTGF and latent TGFß migrated as a single high molecular weight band under non-reducing conditions, suggesting that they were in a covalent (disulfide) complex. This was confirmed by immunoprecipitation. Using CtgfcKO mice, CTGF was required for sequestration of latent TGFß in the matrix and activation of the latent complex at the cell surface through TGFßR3. In vivo deletion of CTGF increased the thickness of the articular cartilage and protected mice from OA. CONCLUSIONS: CTGF is a latent TGFß binding protein that controls the matrix sequestration and activation of TGFß in cartilage. Deletion of CTGF in vivo caused a paradoxical increase in Smad2 phosphorylation resulting in thicker cartilage that was protected from OA.


Subject(s)
Arthritis, Experimental/metabolism , Connective Tissue Growth Factor/physiology , Osteoarthritis/metabolism , Transforming Growth Factor beta/metabolism , Animals , Arthritis, Experimental/pathology , Arthritis, Experimental/prevention & control , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cells, Cultured , Chondrocytes/drug effects , Connective Tissue Growth Factor/deficiency , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/pharmacology , Homeostasis/drug effects , Homeostasis/physiology , Humans , Mice, Knockout , Osteoarthritis/pathology , Osteoarthritis/prevention & control , Proteoglycans/metabolism , Proteomics , Receptors, Transforming Growth Factor beta/metabolism , Recombinant Proteins/pharmacology , Smad2 Protein/metabolism , Tissue Culture Techniques
6.
Arthritis Rheum ; 60(7): 2019-27, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19565481

ABSTRACT

OBJECTIVE: We have previously identified in articular cartilage an abundant pool of the heparin-binding growth factor, fibroblast growth factor 2 (FGF-2), which is bound to the pericellular matrix heparan sulfate proteoglycan, perlecan. This pool of FGF-2 activates chondrocytes upon tissue loading and is released following mechanical injury. In vitro, FGF-2 suppresses interleukin-1-driven aggrecanase activity in human cartilage explants, suggesting a chondroprotective role in vivo. We undertook this study to investigate the in vivo role of FGF-2 in murine cartilage. METHODS: Basal characteristics of the articular cartilage of Fgf2(-/-) and Fgf2(+/+) mice were determined by histomorphometry, nanoindentation, and quantitative reverse transcriptase-polymerase chain reaction. The articular cartilage was graded histologically in aged mice as well as in mice in which osteoarthritis (OA) had been induced by surgical destabilization of the medial meniscus. RNA was extracted from the joints of Fgf2(-/-) and Fgf2(+/+) mice following surgery and quantitatively assessed for key regulatory molecules. The effect of subcutaneous administration of recombinant FGF-2 on OA progression was assessed in Fgf2(-/-) mice. RESULTS: Fgf2(-/-) mice were morphologically indistinguishable from wild-type (WT) animals up to age 12 weeks; the cartilage thickness and proteoglycan staining were equivalent, as was the mechanical integrity of the matrix. However, Fgf2(-/-) mice exhibited accelerated spontaneous and surgically induced OA. Surgically induced OA in Fgf2(-/-) mice was suppressed to levels in WT mice by subcutaneous administration of recombinant FGF-2. Increased disease in Fgf2(-/-) mice was associated with increased expression of messenger RNA of Adamts5, the key murine aggrecanase. CONCLUSION: These data identify FGF-2 as a novel endogenous chondroprotective agent in articular cartilage.


Subject(s)
ADAM Proteins/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Fibroblast Growth Factor 2/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , ADAMTS5 Protein , Aggrecans/metabolism , Animals , Disease Models, Animal , Fibroblast Growth Factor 2/genetics , Heparan Sulfate Proteoglycans/metabolism , Interleukin-1/metabolism , Joints/metabolism , Joints/pathology , Mice , Mice, Knockout , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...