Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 9(1): 5343, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559339

ABSTRACT

Diverse cellular processes depend on the lysosomal protease system but how cells regulate lysosomal proteolytic capacity is only partly understood. We show here that cells can respond to protease/substrate imbalance in this compartment by de novo expression of multiple lysosomal hydrolases. This response, exemplified here either by loss of asparagine endopeptidase (AEP) or other lysosomal cysteine proteases, or by increased endocytic substrate load, is not dependent on the transcription factor EB (TFEB) but rather is triggered by STAT3 activation downstream of lysosomal oxidative stress. Similar lysosomal adaptations are seen in mice and cells expressing a constitutively active form of STAT3. Our results reveal how cells can increase lysosomal protease capacity under 'fed' rather than 'starved' conditions that activate the TFEB system. In addition, STAT3 activation due to lysosomal stress likely explains the hyperproliferative kidney disease and splenomegaly observed in AEP-deficient mice.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cysteine Endopeptidases/metabolism , Lysosomal Storage Diseases/genetics , Lysosomes/physiology , STAT3 Transcription Factor/genetics , Animals , Cell Line , Cysteine Endopeptidases/genetics , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Humans , Janus Kinase 2/genetics , Kidney Diseases/genetics , Kidney Diseases/pathology , Lysosomal Storage Diseases/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/physiology , RNA Interference , RNA, Small Interfering/genetics
2.
Orphanet J Rare Dis ; 10: 135, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26471370

ABSTRACT

BACKGROUND: Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. METHODS: Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. RESULTS: Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypohidrosis; (ii) multiple contractures, in particular triceps surae muscle contractures; (iii) diffuse progressive muscular weakness; (iv) pulmonary fibrosis in adulthood and (v) other features including exocrine pancreatic insufficiency, liver impairment and growth retardation. Muscle magnetic resonance imaging was informative and showed muscle atrophy and fatty infiltration. Histological examination of skeletal muscle revealed extensive fibroadipose tissue infiltration. Microscopy of the skin showed a scleroderma-like aspect with fibrosis and alterations of the elastic network. FAM111B gene analysis identified five different missense variants (two recurrent mutations were found respectively in three and four independent families). All the mutations were predicted to localize in the trypsin-like cysteine/serine peptidase domain of the protein. We suggest gain-of-function or dominant-negative mutations resulting in FAM111B enzymatic activity changes. CONCLUSIONS: HFP with tendon contractures, myopathy and pulmonary fibrosis, is a multisystemic disorder due to autosomal dominant FAM111B mutations. Future functional studies will help in understanding the specific pathological process of this fibrosing disorder.


Subject(s)
Cell Cycle Proteins/genetics , Contracture/genetics , Muscular Diseases/genetics , Pulmonary Fibrosis/genetics , Sclerosis/genetics , Skin Abnormalities/genetics , Skin Diseases, Genetic/genetics , Tendons/pathology , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , Contracture/complications , Contracture/diagnosis , Female , Humans , Infant , Male , Middle Aged , Molecular Sequence Data , Muscular Diseases/complications , Muscular Diseases/diagnosis , Mutation/genetics , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/diagnosis , Sclerosis/complications , Sclerosis/diagnosis , Skin Abnormalities/complications , Skin Abnormalities/diagnosis , Skin Diseases, Genetic/complications , Skin Diseases, Genetic/diagnosis
4.
PLoS Med ; 5(6): e131, 2008 Jun 24.
Article in English | MEDLINE | ID: mdl-18578563

ABSTRACT

BACKGROUND: Loss-of-function variants in the gene encoding filaggrin (FLG) are major determinants of eczema. We hypothesized that weakening of the physical barrier in FLG-deficient individuals may potentiate the effect of environmental exposures. Therefore, we investigated whether there is an interaction between FLG loss-of-function mutations with environmental exposures (pets and dust mites) in relation to the development of eczema. METHODS AND FINDINGS: We used data obtained in early life in a high-risk birth cohort in Denmark and replicated the findings in an unselected birth cohort in the United Kingdom. Primary outcome was age of onset of eczema; environmental exposures included pet ownership and mite and pet allergen levels. In Copenhagen (n = 379), FLG mutation increased the risk of eczema during the first year of life (hazard ratio [HR] 2.26, 95% confidence interval [CI] 1.27-4.00, p = 0.005), with a further increase in risk related to cat exposure at birth amongst children with FLG mutation (HR 11.11, 95% CI 3.79-32.60, p < 0.0001); dog exposure was moderately protective (HR 0.49, 95% CI 0.24-1.01, p = 0.05), but not related to FLG genotype. In Manchester (n = 503) an independent and significant association of the development of eczema by age 12 mo with FLG genotype was confirmed (HR 1.95, 95% CI 1.13-3.36, p = 0.02). In addition, the risk increased because of the interaction of cat ownership at birth and FLG genotype (HR 3.82, 95% CI 1.35-10.81, p = 0.01), with no significant effect of the interaction with dog ownership (HR 0.59, 95% CI 0.16-2.20, p = 0.43). Mite-allergen had no effects in either cohort. The observed effects were independent of sensitisation. CONCLUSIONS: We have demonstrated a significant interaction between FLG loss-of-function main mutations (501x and 2282del4) and cat ownership at birth on the development of early-life eczema in two independent birth cohorts. Our data suggest that cat but not dog ownership substantially increases the risk of eczema within the first year of life in children with FLG loss-of-function variants, but not amongst those without. FLG-deficient individuals may need to avoid cats but not dogs in early life.


Subject(s)
Cats/immunology , Dermatitis, Atopic/genetics , Environmental Exposure , Intermediate Filament Proteins/genetics , Age Factors , Age of Onset , Animals , Codon, Nonsense/physiology , Cohort Studies , Dogs , Environment , Filaggrin Proteins , Gene Expression Regulation , Genetic Predisposition to Disease , Genotype , Humans , Infant , Infant, Newborn , Intermediate Filament Proteins/physiology , Parturition , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...