Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Space Res ; 31(6): 1487-93, 2003.
Article in English | MEDLINE | ID: mdl-12971403

ABSTRACT

The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Becton [correction of Beckon] Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.


Subject(s)
Biomarkers , Gene Expression/radiation effects , Lymphocytes/radiation effects , Radiation Monitoring/methods , Radiobiology/methods , Space Flight , Animals , Chromosome Aberrations , Dose-Response Relationship, Radiation , Film Dosimetry , Humans , Leukocyte Count , Lymphocytes/physiology , Mice , Models, Animal , Monocytes/physiology , Monocytes/radiation effects , Radiation Monitoring/statistics & numerical data , Radioactive Hazard Release/statistics & numerical data , Radiobiology/statistics & numerical data , Software
2.
Int J Radiat Biol ; 78(11): 1011-21, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12456288

ABSTRACT

PURPOSE: To assess the efficacy of fluorescent-based quantitative reverse transcription-polymerase chain reaction (QRT-PCR) technology to measure gene expression changes (GEC) for rapid, point-of-care radiation dose assessment. MATERIALS AND METHODS: A real-time QRT-PCR assay based on 5'-fluorogenic nuclease TaqMan(TM) methodology was developed, which employs both relative and absolute quantification of a candidate mRNA biomarker. Growth arrest and DNA damage gene 45 (GADD45), a cell-cycle regulation and DNA repair gene, served as the paradigm because of the reported linear dose-response relationship for mRNA induction in the human myeloid tumor cell line (ML-1) over the range of 2-50 cGy. Using an ex vivo whole-blood model, GEC was measured from total blood RNA at 24h and 48 h after (60)Co gamma-ray exposures (0-3 Gy; 0.1 Gy/min). RESULTS: A linear and reproducible up-regulation representing a twofold to fourfold change in GADD45 relative and absolute GEC was confirmed in both intra- and inter-assay analyses. CONCLUSIONS: Primer and probes to detect GADD45 targets using real-time PCR were developed. This is the first report using realtime QRT-PCR to measure radiation-induced GEC dose response. Real-time QRT-PCR using GEC as biomarkers offers rapidity, sensitivity, and reproducibility as a potential efficient biological dosimetry tool applicable in radiation therapy applications and early-response accident biodosimetry.


Subject(s)
Blood Cells/radiation effects , Gene Expression/radiation effects , Proteins/genetics , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Biomarkers/analysis , Blood Cells/metabolism , Calibration , Dose-Response Relationship, Radiation , Gamma Rays , Humans , Intracellular Signaling Peptides and Proteins , Protein Biosynthesis , RNA, Messenger/biosynthesis , Radiometry/methods , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Time Factors , Up-Regulation/radiation effects , GADD45 Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...