Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Environ Sci ; 12: 1-19, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38516348

ABSTRACT

Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.

2.
Environ Sci Technol ; 55(1): 749-756, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33305567

ABSTRACT

The nitrogen (N) balance (i.e., the difference between N inputs and grain N removal) provides an indication of potential N losses to the environment. The magnitude of the N balance in a given year reflects the influence of random (e.g., climate, pest outbreak) and/or persistent (e.g., producer skills, soil type) factors over time. We assessed here the degree to which variation in magnitude of N balance across irrigated maize fields in the US Corn Belt was explained by persistent factors and identified the underlying drivers. Fields with large N balance were identified in specific ("ranking") years, and these same fields were assessed in other ("nonranking") years. Persistent factors explained up to half of the variation in N balance, with 70% of fields with N surplus in a given year also exhibiting surplus in other years. Persistence in large N balance was associated with fields growing maize continuously and applying higher N inputs without any yield advantage compared with other fields. There was also a relationship between N balance and mismatch between producer actual and recommended N rate. These findings highlight available room to reduce N excess in producer fields via improved management, providing a starting point to set priorities and inform policy.


Subject(s)
Fertilizers , Zea mays , Agriculture , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen/analysis , Soil
3.
Bioscience ; 68(3): 194-203, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29662247

ABSTRACT

Farmers, food supply-chain entities, and policymakers need a simple but robust indicator to demonstrate progress toward reducing nitrogen pollution associated with food production. We show that nitrogen balance-the difference between nitrogen inputs and nitrogen outputs in an agricultural production system-is a robust measure of nitrogen losses that is simple to calculate, easily understood, and based on readily available farm data. Nitrogen balance provides farmers with a means of demonstrating to an increasingly concerned public that they are succeeding in reducing nitrogen losses while also improving the overall sustainability of their farming operation. Likewise, supply-chain companies and policymakers can use nitrogen balance to track progress toward sustainability goals. We describe the value of nitrogen balance in translating environmental targets into actionable goals for farmers and illustrate the potential roles of science, policy, and agricultural support networks in helping farmers achieve them.

4.
Environ Manage ; 55(3): 646-56, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25479705

ABSTRACT

A critical part of increasing conservation effectiveness is targeting the "right practice" to the "right place" where it can intercept pollutant flowpaths. Conceptually, these flowpaths can be inferred from soil and slope characteristics, and in this study, we developed an agro-hydrologic classification to identify N and P loss pathways and priority conservation practices in small watersheds in the U.S. Midwest. We developed a GIS framework to classify 11,010 small watersheds in the Upper Mississippi and Ohio River basins based on soil permeability and slope characteristics of agricultural cropland areas in each watershed. The amount of cropland in any given watershed varied from <10 to >60 %. Cropland areas were classified into five main categories, with slope classes of <2, 2-5, and >5 %, and soil drainage classes of poorly and well drained. Watersheds in the Upper Mississippi River basin (UMRB) were dominated by cropland areas in low slopes and poorly drained soils, whereas less-intensively cropped watersheds in Wisconsin and Minnesota (in the UMRB) and throughout the Ohio River basin were overwhelmingly well drained. Hydrologic differences in cropped systems indicate that a one-size-fits-all approach to conservation selection will not work. Consulting the classification scheme proposed herein may be an appropriate first-step in identifying those conservation practices that might be most appropriate for small watersheds in the basin.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/methods , Environmental Pollutants/analysis , Hydrology/methods , Rivers , Soil/chemistry , Geographic Information Systems , Midwestern United States , Nitrogen/analysis , Phosphorus/analysis , Water Movements
5.
Environ Manage ; 52(6): 1440-52, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23979524

ABSTRACT

In this paper, we argue that there is tremendous potential for nitrate-N reductions to occur throughout the Corn Belt region of the USA if we simply let naturally occurring wet spots on the landscape be wet. Geologic and hydrologic data gathered in the Walnut Creek watershed located in south-central Iowa provides compelling evidence that substantial nutrient-processing capacity exists in this dissected glacial landscape. Self-similarity of stratigraphy, sedimentology and hydrology observed at all spatial scales in the watershed suggests that Holocene alluvial fill deposits provide a natural bioreactor for denitrification of upland groundwater nitrate-N; the occurrence of such deposits can be mapped to identify potential nitrogen sinks across the landscape. This approach to identifying potential nitrogen sinks is geology focused and extends potential locations for nutrient processing upstream into the headwater catchments of individual fields.


Subject(s)
Agriculture/methods , Bioreactors/microbiology , Geologic Sediments/microbiology , Rivers , Wetlands , Carbon/analysis , Geologic Sediments/chemistry , Groundwater/analysis , Ice Cover , Iowa , Nitrates/metabolism , Nitrogen/analysis , Water Movements , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...