Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Mol Plant Microbe Interact ; 36(12): 754-763, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37750829

ABSTRACT

Cytoplasmic effectors with an Arg-any amino acid-Arg-Leu (RxLR) motif are encoded by hundreds of genes within the genomes of oomycete Phytophthora spp. and downy mildew pathogens. There has been a dramatic increase in our understanding of the evolution, function, and recognition of these effectors. Host proteins with a wide range of subcellular localizations and functions are targeted by RxLR effectors. Many processes are manipulated, including transcription, post-translational modifications, such as phosphorylation and ubiquitination, secretion, and intracellular trafficking. This involves an array of RxLR effector modes-of-action, including stabilization or destabilization of protein targets, altering or disrupting protein complexes, inhibition or utility of target enzyme activities, and changing the location of protein targets. Interestingly, approximately 50% of identified host proteins targeted by RxLR effectors are negative regulators of immunity. Avirulence RxLR effectors may be directly or indirectly detected by nucleotide-binding leucine-rich repeat resistance (NLR) proteins. Direct recognition by a single NLR of RxLR effector orthologues conserved across multiple Phytophthora pathogens may provide wide protection of diverse crops. Failure of RxLR effectors to interact with or appropriately manipulate target proteins in nonhost plants has been shown to restrict host range. This knowledge can potentially be exploited to alter host targets to prevent effector interaction, providing a barrier to host infection. Finally, recent evidence suggests that RxLR effectors, like cytoplasmic effectors from fungal pathogen Magnaporthe oryzae, may enter host cells via clathrin-mediated endocytosis. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Phytophthora infestans , Amino Acid Sequence , Amino Acid Motifs , Proteins/metabolism , Crops, Agricultural , Plant Diseases/microbiology
2.
Trends Plant Sci ; 28(8): 876-879, 2023 08.
Article in English | MEDLINE | ID: mdl-37270351

ABSTRACT

Recent research demonstrates that undermining interactions between pathogen effectors and their host target proteins can reduce infection. As more effector-target pairs are identified, their structures and interaction surfaces exposed, and there is the possibility of making multiple edits to diverse plant genomes, the desire to convert crops to nonhosts could become reality.


Subject(s)
Crops, Agricultural , Plant Diseases , Crops, Agricultural/genetics , Genome, Plant , Fungal Proteins/metabolism , Host-Pathogen Interactions
3.
J Exp Bot ; 74(10): 3188-3202, 2023 05 19.
Article in English | MEDLINE | ID: mdl-36860200

ABSTRACT

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and, as such, is critical for adaptive responses to biotic stress, when the demand for de novo synthesis of immunity-related proteins and signalling components increases significantly. Successful phytopathogens have evolved an arsenal of small effector proteins which collectively reconfigure multiple host components and signalling pathways to promote virulence; a small, but important, subset of which are targeted to the endomembrane system including the ER. We identified and validated a conserved C-terminal tail-anchor motif in a set of pathogen effectors known to localize to the ER from the oomycetes Hyaloperonospora arabidopsidis and Plasmopara halstedii (downy mildew of Arabidopsis and sunflower, respectively) and used this protein topology to develop a bioinformatic pipeline to identify putative ER-localized effectors within the effectorome of the related oomycete, Phytophthora infestans, the causal agent of potato late blight. Many of the identified P. infestans tail-anchor effectors converged on ER-localized NAC transcription factors, indicating that this family is a critical host target for multiple pathogens.


Subject(s)
Oomycetes , Phytophthora infestans , Plants/metabolism , Transcription Factors/metabolism , Virulence , Endoplasmic Reticulum/metabolism , Plant Diseases
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835216

ABSTRACT

The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.


Subject(s)
Light Signal Transduction , Plants , Plants/metabolism , Signal Transduction , Virulence , Chloroplasts , Plant Diseases , Plant Immunity
5.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994659

ABSTRACT

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Subject(s)
Arabidopsis , Disease Resistance , Host Specificity , Nicotiana , Plant Diseases , Plant Proteins , Arabidopsis/metabolism , Arabidopsis/parasitology , Oomycetes/metabolism , Phytophthora infestans/metabolism , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Proteins/metabolism , Solanum tuberosum/parasitology , Nicotiana/metabolism , Nicotiana/parasitology , Two-Hybrid System Techniques
6.
J Exp Bot ; 73(19): 6902-6915, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35816329

ABSTRACT

Oomycete pathogens secrete hundreds of cytoplasmic RxLR effectors to modulate host immunity by targeting diverse plant proteins. Revealing how effectors manipulate host proteins is pivotal to understanding infection processes and to developing new strategies to control plant disease. Here we show that the Phytophthora infestans RxLR effector Pi22798 interacts in the nucleus with a potato class II knotted-like homeobox (KNOX) transcription factor, StKNOX3. Silencing the ortholog NbKNOX3 in Nicotiana benthamiana reduces host colonization by P. infestans, whereas transient and stable overexpression of StKNOX3 enhances infection. StKNOX3 forms a homodimer which is dependent on its KNOX II domain. The KNOX II domain is also essential for Pi22798 interaction and for StKNOX3 to enhance P. infestans colonization, indicating that StKNOX3 homodimerization contributes to susceptibility. However, critically, the effector Pi22798 promotes StKNOX3 homodimerization, rather than heterodimerization to another KNOX transcription factor StKNOX7. These results demonstrate that the oomycete effector Pi22798 increases pathogenicity by promoting homodimerization specifically of StKNOX3 to enhance susceptibility.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Transcription Factors/genetics , Transcription Factors/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plant Diseases
7.
Methods Mol Biol ; 2354: 95-110, 2021.
Article in English | MEDLINE | ID: mdl-34448156

ABSTRACT

Yeast two-hybrid (Y2H) is a technique used to identify protein-protein interactions. It relies on interacting proteins bringing the two domains of a split transcription factor into close proximity, thereby reconstituting its ability to activate reporter genes. There are many variations on this technique. Here we provide an adapted protocol based on the Invitrogen ProQuest™ Two-Hybrid system, which has been used successfully to screen over 60 Phytophthora infestans pathogen effector proteins to identify candidate-interacting proteins in Solanum tuberosum, and has been used to identify many potato-potato protein-protein interactions.


Subject(s)
Solanum tuberosum , Phytophthora infestans , Plant Diseases , Saccharomyces cerevisiae , Solanum tuberosum/genetics , Transcription Factors , Two-Hybrid System Techniques
8.
Plant Commun ; 1(4): 100050, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33367246

ABSTRACT

The ability to secrete effector proteins that can enter plant cells and manipulate host processes is a key determinant of what makes a successful plant pathogen. Here, we review intracellular effectors from filamentous (fungal and oomycete) phytopathogens and the host proteins and processes that are targeted to promote disease. We cover contrasting virulence strategies and effector modes of action. Filamentous pathogen effectors alter the fates of host proteins that they target, changing their stability, their activity, their location, and the protein partners with which they interact. Some effectors inhibit target activity, whereas others enhance or utilize it, and some target multiple host proteins. We discuss the emerging topic of effectors that target negative regulators of immunity or other plant proteins with activities that support susceptibility. We also highlight the commonly targeted host proteins that are manipulated by effectors from multiple pathogens, including those representing different kingdoms of life.


Subject(s)
Fungi/genetics , Host-Pathogen Interactions , Oomycetes/genetics , Plant Diseases/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/metabolism , Fungi/pathogenicity , Oomycetes/metabolism , Oomycetes/pathogenicity , Plant Cells/microbiology , Protein Transport , Virulence
9.
Plant Commun ; 1(4): 100020, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32715295

ABSTRACT

Ubiquitination is a post-translational modification that regulates many processes in plants. Several ubiquitin E3 ligases act as either positive or negative regulators of immunity by promoting the degradation of different substrates. StPUB17 is an E3 ligase that has previously been shown to positively regulate immunity to bacteria, fungi and oomycetes, including the late blight pathogen Phytophthora infestans. Silencing of StPUB17 promotes pathogen colonization and attenuates Cf4/avr4 cell death. Using yeast-2-hybrid and co-immunoprecipitation we identified the putative K-homology (KH) RNA-binding protein (RBP), StKH17, as a candidate substrate for degradation by StPUB17. StKH17 acts as a negative regulator of immunity that promotes P. infestans infection and suppresses specific immune pathways. A KH RBP domain mutant of StKH17 (StKH17GDDG) is no longer able to negatively regulate immunity, indicating that RNA binding is likely required for StKH17 function. As StPUB17 is a known target of the ubiquitin E3 ligase, StPOB1, we reveal an additional step in an E3 ligase regulatory cascade that controls plant defense.


Subject(s)
Gene Expression Regulation, Plant/immunology , Nicotiana/genetics , Plant Immunity/genetics , Plant Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Cell Death , Plant Proteins/immunology , Nicotiana/immunology , Ubiquitin-Protein Ligases/immunology , Ubiquitination
10.
Plant Physiol ; 180(4): 2227-2239, 2019 08.
Article in English | MEDLINE | ID: mdl-31217198

ABSTRACT

The potato (Solanum tuberosum) blight pathogen Phytophthora infestans delivers Arg-X-Leu-Arg (RXLR) effector proteins into host cells to subvert plant immune responses and promote colonization. We show that transient expression and stable transgenic expression of the RXLR effector Pi22926 in Nicotiana benthamiana promotes leaf colonization by P. infestans. Pi22926 suppresses cell death triggered by coexpression of the Cladosporium fulvum avirulence protein Avr4 and the tomato (Solanum lycopersicum) resistance protein Cf4. Pi22926 interacts with a potato mitogen-activated protein kinase kinase kinase, StMAP3Kß2, in the nucleoplasm. Virus-induced gene silencing (VIGS) of the ortholog NbMAP3Kß2 in N. benthamiana enhances P. infestans colonization and attenuates Cf4/Avr4-induced cell death, indicating that this host protein is a positive regulator of immunity. Cell death induced by Cf4/Avr4 is dependent on NbMAP3Kε and NbMAP3Kß2, indicating that these MAP3Ks function in the same signaling pathway. VIGS of NbMAP3Kß2 does not compromise cell death triggered by overexpression of MAP3Kε. Similarly, VIGS of NbMAP3Kε does not attenuate cell death triggered by MAP3Kß2, demonstrating that these MAP3K proteins function in parallel. In agreement, Pi22926 or another RXLR effector, PexRD2, only suppresses cell death triggered by expression of StMAP3Kß2 or StMAP3Kε, respectively. Our data reveal that two P. infestans effectors, PexRD2 and Pi22926, promote P. infestans colonization by targeting MAP3K proteins that act in parallel in the same signal transduction pathway.


Subject(s)
Phytophthora infestans/pathogenicity , Plant Proteins/metabolism , Cell Death/physiology , Cell Nucleus/metabolism , Cell Nucleus/microbiology , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Immunity/physiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Nicotiana/metabolism , Nicotiana/microbiology
11.
J Exp Bot ; 70(1): 343-356, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30329083

ABSTRACT

Oomycetes such as the potato blight pathogen Phytophthora infestans deliver RXLR effectors into plant cells to manipulate host processes and promote disease. Knowledge of where they localize inside host cells is important in understanding their function. Fifty-two P. infestans RXLR effectors (PiRXLRs) up-regulated during early stages of infection were expressed as fluorescent protein (FP) fusions inside cells of the model host Nicotiana benthamiana. FP-PiRXLR fusions were predominantly nucleo-cytoplasmic, nuclear, or plasma membrane-associated. Some also localized to the endoplasmic reticulum, mitochondria, peroxisomes, or microtubules, suggesting diverse sites of subcellular activity. Seven of the 25 PiRXLRs examined during infection accumulated at sites of haustorium penetration, probably due to co-localization with host target processes; Pi16663 (Avr1), for example, localized to Sec5-associated mobile bodies which showed perihaustorial accumulation. Forty-five FP-RXLR fusions enhanced pathogen leaf colonization when expressed in Nicotiana benthamiana, revealing that their presence was beneficial to infection. Co-expression of PiRXLRs that target and suppress different immune pathways resulted in an additive enhancement of colonization, indicating the potential to study effector combinations using transient expression assays. We provide a broad platform of high confidence P. infestans effector candidates from which to investigate the mechanisms, singly and in combination, by which this pathogen causes disease.


Subject(s)
Host-Pathogen Interactions , Nicotiana/microbiology , Phytophthora infestans/pathogenicity , Plant Diseases/immunology , Virulence Factors/metabolism , Green Fluorescent Proteins/metabolism , Plant Diseases/microbiology , Up-Regulation
12.
Plant Cell Rep ; 38(2): 173-182, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30488097

ABSTRACT

KEY MESSAGE: Oomycetes MAMP Pep-13 can trigger SERK3/BAK1-independent PTI. Silencing of SERK3/BAK1 in solanaceous plants resulted in reduced expression of brassinosteroid marker genes and enhanced PTI transcriptional responses to Pep-13 treatment. To prevent disease, pattern recognition receptors (PRRs) are responsible for detecting microbe-associated molecular patterns (MAMPs) to switch on plant innate immunity. SOMATIC EMBROYOGENESIS KINASE 3 (SERK3)/BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) is a well-characterized receptor-like kinase (RLK) that serves as a pivotal co-receptor with PRRs to activate immunity following recognition of MAMPs including flg22, EF-Tu, INF1 and XEG1. However, the requirement for SERK3/BAK1 in many pattern-triggered immune (PTI) signaling pathways is not yet known. Pep-13 is an oomycete MAMP that consists of a highly conserved motif (an oligopeptide of 13 amino acids) shared in Phytophthora transglutaminases. Quantitative RT-PCR analysis reveals that the transcripts of three PTI marker genes (WRKY7, WRKY8 and ACRE31) rapidly accumulate in response to three different MAMPs: flg22, chitin and Pep-13. Whereas silencing of SERK3/BAK1 in Nicotiana benthamiana or potato compromised transcript accumulation in response to flg22, it did not attenuate WRKY7, WRKY8 and ACRE31 up-regulation in response to chitin or Pep-13. This indicates that Pep-13 triggers immunity in a SERK3/BAK1-independent manner, similar to chitin. Surprisingly, silencing of SERK3/BAK1 led to significantly increased accumulation of PTI marker gene transcripts following Pep-13 or chitin treatment, compared to controls. This was accompanied by reduced expression of brassinosteroid (BR) marker genes StSTDH, StEXP8 and StCAB50 and StCHL1, which is a negative regulator of PTI, supporting previous reports that SERK3/BAK1-dependent BR signaling attenuates plant immunity. We provide Pep-13 as an alternative to chitin as a trigger of SERK3/BAK1-independent immunity.


Subject(s)
Alarmins/metabolism , Nicotiana/immunology , Phytophthora infestans/metabolism , Plant Immunity , Plant Proteins/metabolism , Solanum tuberosum/immunology , Brassinosteroids/pharmacology , Chitin/pharmacology , Flagellin/pharmacology , Gene Expression Regulation, Plant/drug effects , Peptides/pharmacology , Phytophthora infestans/drug effects , Plant Immunity/drug effects , Plant Proteins/genetics , Plants, Genetically Modified , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solanum tuberosum/genetics , Nicotiana/genetics , Transcription, Genetic/drug effects
13.
New Phytol ; 222(1): 438-454, 2019 04.
Article in English | MEDLINE | ID: mdl-30536576

ABSTRACT

The potato blight agent Phytophthora infestans secretes a range of RXLR effectors to promote disease. Recent evidence indicates that some effectors suppress early pattern-triggered immunity (PTI) following perception of microbe-associated molecular patterns (MAMPs). Phytophthora infestans effector PiSFI3/Pi06087/PexRD16 has been previously shown to suppress MAMP-triggered pFRK1-Luciferase reporter gene activity. How PiSFI3 suppresses immunity is unknown. We employed yeast-two-hybrid (Y2H) assays, co-immunoprecipitation, transcriptional silencing by RNA interference and virus-induced gene silencing (VIGS), and X-ray crystallography for structure-guided mutagenesis, to investigate the function of PiSFI3 in targeting a plant U-box-kinase protein (StUBK) to suppress immunity. We discovered that PiSFI3 is active in the host nucleus and interacts in yeast and in planta with StUBK. UBK is a positive regulator of specific PTI pathways in both potato and Nicotiana benthamiana. Importantly, it contributes to early transcriptional responses that are suppressed by PiSFI3. PiSFI3 forms an unusual trans-homodimer. Mutation to disrupt dimerization prevents nucleolar localisation of PiSFI3 and attenuates both its interaction with StUBK and its ability to enhance P. infestans leaf colonisation. PiSFI3 is a 'WY-domain' RXLR effector that forms a novel trans-homodimer which is required for its ability to suppress PTI via interaction with the U-box-kinase protein StUBK.


Subject(s)
Phytophthora infestans/metabolism , Protein Kinases/metabolism , Proteins/metabolism , Solanum tuberosum/immunology , Solanum tuberosum/microbiology , Transcription, Genetic , Apoptosis/drug effects , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Flagellin/pharmacology , Gene Silencing , Green Fluorescent Proteins/metabolism , Mutation/genetics , Phytophthora infestans/pathogenicity , Plant Leaves/drug effects , Plant Leaves/microbiology , Protein Binding/drug effects , Protein Domains , Protein Kinases/chemistry , Protein Multimerization , Solanum tuberosum/drug effects , Solanum tuberosum/genetics , Virulence
14.
Proc Natl Acad Sci U S A ; 115(33): E7834-E7843, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30049706

ABSTRACT

Plant pathogens deliver effectors into plant cells to suppress immunity. Whereas many effectors inactivate positive immune regulators, other effectors associate with negative regulators of immunity: so-called susceptibility (S) factors. Little is known about how pathogens exploit S factors to suppress immunity. Phytophthora infestans RXLR effector Pi02860 interacts with host protein NRL1, which is an S factor whose activity suppresses INF1-triggered cell death (ICD) and is required for late blight disease. We show that NRL1 interacts in yeast and in planta with a guanine nucleotide exchange factor called SWAP70. SWAP70 associates with endosomes and is a positive regulator of immunity. Virus-induced gene silencing of SWAP70 in Nicotiana benthamiana enhances P. infestans colonization and compromises ICD. In contrast, transient overexpression of SWAP70 reduces P. infestans infection and accelerates ICD. Expression of Pi02860 and NRL1, singly or in combination, results in proteasome-mediated degradation of SWAP70. Degradation of SWAP70 is prevented by silencing NRL1, or by mutation of Pi02860 to abolish its interaction with NRL1. NRL1 is a BTB-domain protein predicted to form the substrate adaptor component of a CULLIN3 ubiquitin E3 ligase. A dimerization-deficient mutant, NRL1NQ, fails to interact with SWAP70 but maintains its interaction with Pi02860. NRL1NQ acts as a dominant-negative mutant, preventing SWAP70 degradation in the presence of effector Pi02860, and reducing P. infestans infection. Critically, Pi02860 enhances the association between NRL1 and SWAP70 to promote proteasome-mediated degradation of the latter and, thus, suppress immunity. Preventing degradation of SWAP70 represents a strategy to combat late blight disease.


Subject(s)
DNA-Binding Proteins/immunology , Nicotiana/immunology , Plant Immunity , Plant Proteins/immunology , Cullin Proteins/genetics , Cullin Proteins/immunology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/immunology , Phytophthora infestans/immunology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Proteolysis , Nicotiana/genetics , Nicotiana/microbiology
15.
New Phytol ; 219(4): 1433-1446, 2018 09.
Article in English | MEDLINE | ID: mdl-29932222

ABSTRACT

Pathogens secrete effector proteins to interfere with plant innate immunity, in which Ca2+ /calmodulin (CaM) signalling plays key roles. Thus far, few effectors have been identified that directly interact with CaM for defence suppression. Here, we report that SFI5, an RXLR effector from Phytophthora infestans, suppresses microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) by interacting with host CaMs. We predicted the CaM-binding site in SFI5 using in silico analysis. The interaction between SFI5 and CaM was tested by both in vitro and in vivo assays. MTI suppression by SFI5 and truncated variants were performed in a tomato protoplast system. We found that both the predicted CaM-binding site and the full-length SFI5 protein interact with CaM in the presence of Ca2+ . MTI responses, such as FRK1 upregulation, reactive oxygen species accumulation, and mitogen-activated protein kinase activation were suppressed by truncated SFI5 proteins containing the C-terminal CaM-binding site but not by those without it. The plasma membrane localization of SFI5 and its ability to enhance infection were also perturbed by loss of the CaM-binding site. We conclude that CaM-binding is required for localization and activity of SFI5. We propose that SFI5 suppresses plant immunity by interfering with immune signalling components after activation by CaMs.


Subject(s)
Calmodulin/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Phytophthora infestans/metabolism , Plant Immunity , Proteins/chemistry , Proteins/metabolism , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Amino Acid Motifs , Amino Acid Sequence , Calcium/pharmacology , Cell Membrane/metabolism , Solanum lycopersicum/metabolism , Peptides/chemistry , Peptides/metabolism , Phytophthora infestans/drug effects , Plant Immunity/drug effects , Protein Binding/drug effects
16.
PLoS Genet ; 13(1): e1006540, 2017 01.
Article in English | MEDLINE | ID: mdl-28056034

ABSTRACT

Hypersensitive response programmed cell death (HR-PCD) is a critical feature in plant immunity required for pathogen restriction and prevention of disease development. The precise control of this process is paramount to cell survival and an effective immune response. The discovery of new components that function to suppress HR-PCD will be instrumental in understanding the regulation of this fundamental mechanism. Here we report the identification and characterisation of a BTB domain E3 ligase protein, POB1, that functions to suppress HR-PCD triggered by evolutionarily diverse pathogens. Nicotiana benthamiana and tobacco plants with reduced POB1 activity show accelerated HR-PCD whilst those with increased POB1 levels show attenuated HR-PCD. We demonstrate that POB1 dimerization and nuclear localization are vital for its function in HR-PCD suppression. Using protein-protein interaction assays, we identify the Plant U-Box E3 ligase PUB17, a well established positive regulator of plant innate immunity, as a target for POB1-mediated proteasomal degradation. Using confocal imaging and in planta immunoprecipitation assays we show that POB1 interacts with PUB17 in the nucleus and stimulates its degradation. Mutated versions of POB1 that show reduced interaction with PUB17 fail to suppress HR-PCD, indicating that POB1-mediated degradation of PUB17 U-box E3 ligase is an important step for negative regulation of specific immune pathways in plants. Our data reveals a new mechanism for BTB domain proteins in suppressing HR-PCD in plant innate immune responses.


Subject(s)
Plant Immunity , Plant Proteins/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Cell Death , Mutation , Plant Proteins/genetics , Protein Binding , Nicotiana/genetics , Nicotiana/immunology , Ubiquitin-Protein Ligases/genetics
18.
Plant Physiol ; 171(1): 645-57, 2016 05.
Article in English | MEDLINE | ID: mdl-26966171

ABSTRACT

Plant pathogens deliver effectors to manipulate host processes. We know little about how fungal and oomycete effectors target host proteins to promote susceptibility, yet such knowledge is vital to understand crop disease. We show that either transient expression in Nicotiana benthamiana, or stable transgenic expression in potato (Solanum tuberosum), of the Phytophthora infestans RXLR effector Pi02860 enhances leaf colonization by the pathogen. Expression of Pi02860 also attenuates cell death triggered by the P. infestans microbe-associated molecular pattern INF1, indicating that the effector suppresses pattern-triggered immunity. However, the effector does not attenuate cell death triggered by Cf4/Avr4 coexpression, showing that it does not suppress all cell death activated by cell surface receptors. Pi02860 interacts in yeast two-hybrid assays with potato NPH3/RPT2-LIKE1 (NRL1), a predicted CULLIN3-associated ubiquitin E3 ligase. Interaction of Pi02860 in planta was confirmed by coimmunoprecipitation and bimolecular fluorescence complementation assays. Virus-induced gene silencing of NRL1 in N. benthamiana resulted in reduced P. infestans colonization and accelerated INF1-mediated cell death, indicating that this host protein acts as a negative regulator of immunity. Moreover, whereas NRL1 virus-induced gene silencing had no effect on the ability of the P. infestans effector Avr3a to suppress INF1-mediated cell death, such suppression by Pi02860 was significantly attenuated, indicating that this activity of Pi02860 is mediated by NRL1. Transient overexpression of NRL1 resulted in the suppression of INF1-mediated cell death and enhanced P. infestans leaf colonization, demonstrating that NRL1 acts as a susceptibility factor to promote late blight disease.


Subject(s)
Host-Pathogen Interactions/physiology , Phytophthora infestans/pathogenicity , Plant Proteins/metabolism , Solanum tuberosum/microbiology , Cell Death/genetics , Disease Susceptibility , Gene Expression Regulation, Plant , Phytophthora infestans/metabolism , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/microbiology , Plant Proteins/genetics , Plants, Genetically Modified , Protein Domains , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Nicotiana/genetics , Nicotiana/metabolism
19.
Nat Commun ; 7: 10311, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26822079

ABSTRACT

Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c-1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease.


Subject(s)
Nicotiana/enzymology , Phytophthora infestans/metabolism , Plant Diseases/parasitology , Plant Proteins/metabolism , Protein Phosphatase 1/metabolism , Solanum tuberosum/enzymology , Host-Pathogen Interactions , Phytophthora infestans/genetics , Plant Diseases/genetics , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/parasitology , Plant Proteins/genetics , Protein Binding , Protein Phosphatase 1/genetics , Solanum tuberosum/genetics , Solanum tuberosum/parasitology , Nicotiana/genetics , Nicotiana/parasitology
20.
Mol Plant ; 8(9): 1385-95, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25936676

ABSTRACT

Plant pathogens deliver effector proteins that alter host processes to create an environment conducive to colonization. Attention has focused on identifying the targets of effectors and how their manipulation facilitates disease. RXLR effector Pi04089 from the potato blight pathogen Phytophthora infestans accumulates in the host nucleus and enhances colonization when transiently expressed in planta. Its nuclear localization is required for enhanced P. infestans colonization. Pi04089 interacts in yeast and in planta with a putative potato K-homology (KH) RNA-binding protein, StKRBP1. Co-localization of Pi04089 and StKRBP1, and bimolecular fluorescence complementation between them, indicate they associate at nuclear speckles. StKRBP1 protein levels increased when it was co-expressed with Pi04089. Indeed, such accumulation of StKRBP1 was observed also on the first day of leaf colonization by the pathogen. Remarkably, overexpression of StKRBP1 significantly enhances P. infestans infection. Mutation of the nucleotide-binding motif GxxG to GDDG in all three KH domains of StKRBP1 abolishes its interaction with Pi04089, its localization to nuclear speckles, and its increased accumulation when co-expressed with the effector. Moreover, the mutant StKRBP1 protein no longer enhances leaf colonization by P. infestans, implying that nucleotide binding is likely required for this activity. We thus argue that StKRBP1 can be regarded as a susceptibility factor, as its activity is beneficial to the pathogen.


Subject(s)
Phytophthora infestans/physiology , Plant Diseases/microbiology , Plant Proteins/chemistry , Plant Proteins/metabolism , RNA-Binding Proteins/metabolism , Solanum tuberosum/metabolism , Solanum tuberosum/microbiology , Amino Acid Motifs , Amino Acid Sequence , Cell Nucleus/metabolism , Molecular Sequence Data , Mutation , Phytophthora infestans/growth & development , Phytophthora infestans/pathogenicity , Protein Binding , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...