Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Ann Biomed Eng ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684606

ABSTRACT

Tissue engineered scaffolds are needed to support physiological loads and emulate the micrometer-scale strain gradients within tissues that guide cell mechanobiological responses. We designed and fabricated micro-truss structures to possess spatially varying geometry and controlled stiffness gradients. Using a custom projection microstereolithography (µSLA) system, using digital light projection (DLP), and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) hydrogel monomers, three designs with feature sizes < 200 µm were formed: (1) uniform structure with 1 MPa structural modulus ( E ) designed to match equilibrium modulus of healthy articular cartilage, (2) E = 1 MPa gradient structure designed to vary strain with depth, and (3) osteochondral bilayer with distinct cartilage ( E = 1 MPa) and bone ( E = 7 MPa) layers. Finite element models (FEM) guided design and predicted the local mechanical environment. Empty trusses and poly(ethylene glycol) norbornene hydrogel-infilled composite trusses were compressed during X-ray microscopy (XRM) imaging to evaluate regional stiffnesses. Our designs achieved target moduli for cartilage and bone while maintaining 68-81% porosity. Combined XRM imaging and compression of empty and hydrogel-infilled micro-truss structures revealed regional stiffnesses that were accurately predicted by FEM. In the infilling hydrogel, FEM demonstrated the stress-shielding effect of reinforcing structures while predicting strain distributions. Composite scaffolds made from stiff µSLA-printed polymers support physiological load levels and enable controlled mechanical property gradients which may improve in vivo outcomes for osteochondral defect tissue regeneration. Advanced 3D imaging and FE analysis provide insights into the local mechanical environment surrounding cells in composite scaffolds.

2.
J Struct Biol ; 216(2): 108073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432598

ABSTRACT

Cryo-electron microscopy has become a powerful tool to determine three-dimensional (3D) structures of rigid biological macromolecules from noisy micrographs with single-particle reconstruction. Recently, deep neural networks, e.g., CryoDRGN, have demonstrated conformational and compositional heterogeneity of complexes. However, the lack of ground-truth conformations poses a challenge to assess the performance of heterogeneity analysis methods. In this work, variational autoencoders (VAE) with three types of deep generative priors were learned for latent variable inference and heterogeneous 3D reconstruction via Bayesian inference. More specifically, VAEs with "Variational Mixture of Posteriors" priors (VampPrior-SPR), non-parametric exemplar-based priors (ExemplarPrior-SPR) and priors from latent score-based generative models (LSGM-SPR) were quantitatively compared with CryoDRGN. We built four simulated datasets composed of hypothetical continuous conformation or discrete states of the hERG K + channel. Empirical and quantitative comparisons of inferred latent representations were performed with affine-transformation-based metrics. These models with more informative priors gave better regularized, interpretable factorized latent representations with better conserved pairwise distances, less deformed latent distributions and lower within-cluster variances. They were also tested on experimental datasets to resolve compositional and conformational heterogeneity (50S ribosome assembly, cowpea chlorotic mottle virus, and pre-catalytic spliceosome) with comparable high resolution. Codes and data are available: https://github.com/benjamin3344/DGP-SPR.


Subject(s)
Bayes Theorem , Cryoelectron Microscopy , Imaging, Three-Dimensional , Cryoelectron Microscopy/methods , Imaging, Three-Dimensional/methods , Algorithms , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure
3.
Adv Mater ; : e2309026, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38243918

ABSTRACT

Volumetric additive manufacturing (VAM) is an emerging layerless method for the rapid processing of reactive resins into 3D structures, where printing is much faster (seconds) than other lithography and direct ink writing methods (minutes to hours). As a vial of resin rotates in the VAM process, patterned light exposure defines a 3D object and then resin that has not undergone gelation can be washed away. Despite the promise of VAM, there are challenges with the printing of soft hydrogel materials from non-viscous precursors, including multi-material constructs. To address this, sacrificial gelatin is used to modulate resin viscosity to support the cytocompatible VAM printing of macromers based on poly(ethylene glycol) (PEG), hyaluronic acid (HA), and polyacrylamide (PA). After printing, gelatin is removed by washing at an elevated temperature. To print multi-material constructs, the gelatin-containing resin is used as a shear-yielding suspension bath (including HA to further modulate bath properties) where ink can be extruded into the bath to define a multi-material resin that can then be processed with VAM into a defined object. Multi-material constructs of methacrylated HA (MeHA) and gelatin methacrylamide (GelMA) are printed (as proof-of-concept) with encapsulated mesenchymal stromal cells (MSCs), where the local hydrogel properties guide cell spreading behavior with culture.

4.
Proc Natl Acad Sci U S A ; 121(4): e2320855121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232285
5.
MRS Commun ; 13(5): 764-785, 2023.
Article in English | MEDLINE | ID: mdl-37901477

ABSTRACT

Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds. Departing from established sequential fabrication methods like stereolithography or digital light printing, volumetric additive manufacturing offers new opportunities for the materials that can be used for printing. These include viscous acrylates and elastomers, epoxies (and orthogonal epoxy-acrylate formulations with spatially controlled stiffness) formulations, tunable stiffness thiol-enes and shape memory foams, polymer derived ceramics, silica-nanocomposite based glass, and gelatin-based hydrogels for cell-laden biofabrication. Here we review these materials, highlight the challenges to adapt them to volumetric additive manufacturing, and discuss the perspectives they present. Supplementary Information: The online version contains supplementary material available at10.1557/s43579-023-00447-x.

6.
Clin Cancer Res ; 29(18): 3659-3667, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37363962

ABSTRACT

PURPOSE: To evaluate DS-6157a, an antibody-drug conjugate targeting G protein-coupled receptor 20 (GPR20), in gastrointestinal stromal tumors (GIST). PATIENTS AND METHODS: In this phase I multicenter, open-label, multiple-dose study, patients with previously treated advanced GIST received intravenous DS-6157a on Day 1 of 21-day cycles, with a starting dose of 1.6 mg/kg. The primary objective evaluated the safety and tolerability of DS-6157a, while determining dose-limiting toxicity (DLT) and the MTD. Secondary objectives included plasma pharmacokinetics parameters, plasma antidrug antibodies (ADA), and efficacy. RESULTS: A total of 34 patients enrolled. DS-6157a was well tolerated, with DLTs in 4 patients (11.8%) at doses of 6.4 mg/kg, 9.6 mg/kg, and 12.8 mg/kg; the MTD was determined to be 6.4 mg/kg. Treatment-emergent adverse events (TEAE) grade ≥3 occurred in 17 patients (50.0%), including decreased platelet count (23.5%), anemia (20.6%), decreased neutrophil count (14.7%), and decreased white blood cell count (11.8%). Four patients (11.8%) experienced serious adverse events related to DS-6157a. Six patients died with 5 due to disease progression and 1 due to DS-6157a-related TEAE. Tumor shrinkage was observed in 7 patients (20.6%), and 1 patient (2.9%) achieved a partial response. Plasma concentrations and exposure of intact DS-6157a, DXd, and total anti-GPR20 antibody all demonstrated a dose-dependent profile. No treatment-emergent ADAs were observed. CONCLUSIONS: Targeting GPR20 with DS-6157a was tolerated in patients with advanced GIST with tumor shrinkage demonstrated in KIT/PDGFRA wild-type GIST. However, the study did not proceed further due to lower efficacy outcomes than anticipated.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Immunoconjugates , Neoplasms , Humans , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Antineoplastic Agents/adverse effects , Neoplasms/drug therapy , Immunoconjugates/therapeutic use , Antibodies/therapeutic use , Maximum Tolerated Dose
7.
Int J Audiol ; 62(7): 682-687, 2023 07.
Article in English | MEDLINE | ID: mdl-35574926

ABSTRACT

OBJECTIVE: The use of various types of filtering facepiece class 3 (FFP3) mask have become commonplace since the Covid-19 outbreak. These have been evaluated in terms of efficacy regarding aerosol filtration but less emphasis has been placed on the acoustic effects of such masks and their consequences for clinical communication. DESIGN: A microphone 65 cm from a sound-producing Head and Torso Simulator (wearing the masks) was used to measure attenuation via a tone sweep. Predicted impact on speech reception in noise was assessed by weighting the attenuations of cochlear excitation patterns by the frequency importance function of the Speech Intelligibility Index. STUDY SAMPLE: We evaluated acoustic attenuation properties of seven FFP3 masks and a Type IIR surgical mask (as a comparator). RESULTS: The Type IIR mask had the smallest impact on SNR (2.6 dB with visor). Most FFP3s with an addition of a visor (if not already face covering) impacted SNR by approximately 6 dB. The 3 M 6000 was significantly worse (15.8 dB). CONCLUSIONS: Mouth-and-nose covering FFP3s masks had similar effects on SNR (≈6.2 dB with visor). The Tecmen TM-H2 had several advantages over other masks evaluated. It was reusable, allowed lipreading clues and the attenuation was similar to other FFP3s.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Personal Protective Equipment , Noise/adverse effects , Noise/prevention & control , Speech Intelligibility , Acoustics
8.
NPJ Regen Med ; 7(1): 60, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36261516

ABSTRACT

Growth plate injuries affecting the pediatric population may cause unwanted bony repair tissue that leads to abnormal bone elongation. Clinical treatment involves bony bar resection and implantation of an interpositional material, but success is limited and the bony bar often reforms. No treatment attempts to regenerate the growth plate cartilage. Herein we develop a 3D printed growth plate mimetic composite as a potential regenerative medicine approach with the goal of preventing limb length discrepancies and inducing cartilage regeneration. A poly(ethylene glycol)-based resin was used with digital light processing to 3D print a mechanical support structure infilled with a soft cartilage-mimetic hydrogel containing chondrogenic cues. Our biomimetic composite has similar mechanical properties to native rabbit growth plate and induced chondrogenic differentiation of rabbit mesenchymal stromal cells in vitro. We evaluated its efficacy as a regenerative interpositional material applied after bony bar resection in a rabbit model of growth plate injury. Radiographic imaging was used to monitor limb length and tibial plateau angle, microcomputed tomography assessed bone morphology, and histology characterized the repair tissue that formed. Our 3D printed growth plate mimetic composite resulted in improved tibial lengthening compared to an untreated control, cartilage-mimetic hydrogel only condition, and a fat graft. However, in vivo the 3D printed growth plate mimetic composite did not show cartilage regeneration within the construct histologically. Nevertheless, this study demonstrates the feasibility of a 3D printed biomimetic composite to improve limb lengthening, a key functional outcome, supporting its further investigation as a treatment for growth plate injuries.

9.
Indoor Air ; 32(10): e13142, 2022 10.
Article in English | MEDLINE | ID: mdl-36305077

ABSTRACT

Implications for the academic and interpersonal development of children and adolescents underpin a global political consensus to maintain in-classroom teaching during the ongoing COVID-19 pandemic. In support of this aim, the WHO and UNICEF have called for schools around the globe to be made safer from the risk of COVID-19 transmission. Detailed guidance is needed on how this goal can be successfully implemented in a wide variety of educational settings in order to effectively mitigate impacts on the health of students, staff, their families, and society. This review provides a comprehensive synthesis of current scientific evidence and emerging standards in relation to the use of layered prevention strategies (involving masks, distancing, and ventilation), setting out the basis for their implementation in the school environment. In the presence of increasingly infectious SARS-Cov-2 variants, in-classroom teaching can only be safely maintained through a layered strategy combining multiple protective measures. The precise measures that are needed at any point in time depend upon a number of dynamic factors, including the specific threat-level posed by the circulating variant, the level of community infection, and the political acceptability of the resultant risk. By consistently implementing appropriate prophylaxis measures, evidence shows that the risk of infection from in-classroom teaching can be dramatically reduced. Current studies indicate that wearing high-quality masks and regular testing are amongst the most important measures in preventing infection transmission; whilst effective natural and mechanical ventilation systems have been shown to reduce infection risks in classrooms by over 80%.


Subject(s)
Air Pollution, Indoor , COVID-19 , Child , Adolescent , Humans , SARS-CoV-2 , COVID-19/prevention & control , Masks , Pandemics/prevention & control , Schools
10.
Biomacromolecules ; 23(8): 3272-3285, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35793134

ABSTRACT

Poly(ß-amino ester)-diacrylates (PBAE-dAs) are promising resins for three-dimensional (3D) printing. This study investigated the degradation of two PBAEs with different chemistries and kinetic chain lengths. PBAE-dA monomers were synthesized from benzhydrazide and poly(ethylene glycol) (A6) or butanediol (B6) diacrylate and then photopolymerized with pentaerythritol tetrakis(3-mercaptopropionate), which formed thiol-polyacrylate kinetic chains. This tetrathiol acts as a cross-linker and chain-transfer agent that controls the polyacrylate kinetic chain length. A6 networks exhibited bulk degradation, while B6 networks exhibited surface degradation, which transitioned to a combined surface and bulk degradation. Increasing the tetrathiol concentration shortened the polyacrylate kinetic chain and time-to-reverse gelation but degradation mode was unaffected. Hydrolysis occurred primarily through the ß-amino ester. As network hydrophilicity increased, the slower degrading ester in the thiol-polyacrylate chains contributed to degradation. Overall, this work demonstrates control over network degradation rate, mode of degradation, and time-to-reverse gelation in PBAE networks and their application in 3D printing.


Subject(s)
Esters , Polymers , Polyethylene Glycols , Polymers/pharmacology , Printing, Three-Dimensional , Sulfhydryl Compounds
11.
Adv Funct Mater ; 32(6)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35813039

ABSTRACT

Applications of 3D printing that range from temporary medical devices to environmentally responsible manufacturing would benefit from printable resins that yield polymers with controllable material properties and degradation behavior. Towards this goal, poly(ß-amino ester) (PBAE)-diacrylate resins were investigated due to the wide range of available chemistries and tunable material properties. PBAE-diacrylate resins were synthesized from hydrophilic and hydrophobic chemistries and with varying electron densities on the ester bond to provide control over degradation. Hydrophilic PBAE-diacrylates led to degradation behaviors characteristic of bulk degradation while hydrophobic PBAE-diacrylates led to degradation behaviors dominated initially by surface degradation and then transitioned to bulk degradation. Depending on chemistry, the crosslinked PBAE-polymers exhibited a range of degradation times under accelerated conditions, from complete mass loss in 90 min to minimal mass loss at 45 days. Patterned features with 55 µm resolution were achieved across all resins, but their fidelity was dependent on PBAE-diacrylate molecular weight, reactivity, and printing parameters. In summary, simple chemical modifications in the PBAE-diacrylate resins coupled with projection microstereolithography enables high resolution 3D printed parts with similar architectures and initial properties, but widely different degradation rates and behaviors.

12.
J Lipid Res ; 63(6): 100208, 2022 06.
Article in English | MEDLINE | ID: mdl-35436499

ABSTRACT

The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.


Subject(s)
COVID-19 , Mouthwashes , Antiviral Agents , Cetylpyridinium , Humans , Lipids , Mouthwashes/pharmacology , Povidone-Iodine , RNA, Viral , SARS-CoV-2
13.
Opt Lett ; 47(5): 1279-1282, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230346

ABSTRACT

Volumetric additive manufacturing (VAM) enables rapid printing into a wide range of materials, offering significant advantages over other printing technologies, with a lack of inherent layering of particular note. However, VAM suffers from striations, similar in appearance to layers, and similarly limiting applications due to mechanical and refractive index inhomogeneity, surface roughness, etc. We hypothesize that these striations are caused by a self-written waveguide effect, driven by the gelation material nonlinearity upon which VAM relies, and that they are not a direct recording of non-uniform patterning beams. We demonstrate a simple and effective method of mitigating striations via a uniform optical exposure added to the end of any VAM printing process. We show this step to additionally shorten the period from initial gelation to print completion, mitigating the problem of partially gelled parts sinking before print completion, and expanding the range of resins printable in any VAM printer.

14.
Addit Manuf ; 48(Pt A)2021 Dec.
Article in English | MEDLINE | ID: mdl-34900610

ABSTRACT

Volumetric 3D printing motivated by computed axial lithography enables rapid printing of homogeneous parts but requires a high dimensionality gradient-descent optimization to calculate image sets. Here we introduce a new, simpler approach to image-computation that algebraically optimizes a model of the printed object, significantly improving print accuracy of complex parts under imperfect material and optical precision by improving optical dose contrast between the target and surrounding regions. Quality metrics for volumetric printing are defined and shown to be significantly improved by the new algorithm. The approach is extended beyond binary printing to grayscale control of conversion to enable functionally graded materials. The flexibility of the technique is digitally demonstrated with realistic projector point spread functions, printing around occluding structures, printing with restricted angular range, and incorporation of materials chemistry such as inhibition. Finally, simulations show that the method facilitates new printing modalities such as printing into flat, rather than cylindrical packages to extend the applications of volumetric printing.

15.
Biofabrication ; 13(4)2021 09 16.
Article in English | MEDLINE | ID: mdl-34479218

ABSTRACT

Successful 3D scaffold designs for musculoskeletal tissue engineering necessitate full consideration of the form and function of the tissues of interest. When designing structures for engineering cartilage and osteochondral tissues, one must reconcile the need to develop a mechanically robust system that maintains the health of cells embedded in the scaffold. In this work, we present an approach that decouples the mechanical and biochemical needs and allows for the independent development of the structural and cellular niches in a scaffold. Using the highly tuned capabilities of digital light processing-based stereolithography, structures with complex architectures are achieved over a range of effective porosities and moduli. The 3D printed structure is infilled with mesenchymal stem cells and soft biomimetic hydrogels, which are specifically formulated with extracellular matrix analogs and tethered growth factors to provide selected biochemical cues for the guided differentiation towards chondrogenesis and osteogenesis. We demonstrate the ability to utilize these structures to (a) infill a focal chondral defect and mitigate macroscopic and cellular level changes in the cartilage surrounding the defect, and (b) support the development of a stratified multi-tissue scaffold for osteochondral tissue engineering.


Subject(s)
Biomimetics , Tissue Engineering , Cartilage , Chondrogenesis , Hydrogels , Printing, Three-Dimensional , Stereolithography , Tissue Scaffolds
16.
Small Sci ; 1(3)2021 Mar.
Article in English | MEDLINE | ID: mdl-34458889

ABSTRACT

3D printing is transforming traditional processing methods for applications ranging from tissue engineering to optics. To fulfill its maximum potential, 3D printing requires a robust technique for producing structures with precise three-dimensional (x, y and z) control of mechanical properties. Previous efforts to realize such spatial control of modulus within 3D printed parts have largely focused on low-resolution (mm to cm scale) multi-material processes and grayscale approaches that spatially vary the modulus in the x-y plane and energy dose-based (E = I 0 t exp) models that do not account for the resin's sub-linear response to irradiation intensity. Here, we demonstrate a novel approach for through-thickness (z) voxelated control of mechanical properties within a single-material, monolithic part. Control over the local modulus is enabled by a predictive model that incorporates the observed non-reciprocal dose response of the material. The model is validated by an application of atomic force microscopy to map the through-thickness modulus on multi-layered 3D parts. Overall, both smooth gradations (30 MPa change over ≈75 µm) and sharp step-changes (30 MPa change over ≈5 µm) in modulus are realized in poly(ethylene glycol) diacrylate based 3D constructs, paving the way for advancements in tissue engineering, stimuli-responsive 4D printing and graded metamaterials.

17.
Biofabrication ; 13(4)2021 09 02.
Article in English | MEDLINE | ID: mdl-34380115

ABSTRACT

Biofabrication allows for the templating of structural features in materials on cellularly-relevant size scales, enabling the generation of tissue-like structures with controlled form and function. This is particularly relevant for growing organoids, where the application of biochemical and biomechanical stimuli can be used to guide the assembly and differentiation of stem cells and form architectures similar to the parent tissue or organ. Recently, ablative laser-scanning techniques was used to create 3D overhang features in collagen hydrogels at size scales of 10-100µm and supported the crypt-villus architecture in intestinal organoids. As a complementary method, providing advantages for high-throughput patterning, we printed thioester functionalized poly(ethylene glycol) (PEG) elastomers using digital light processing (DLP) and created sacrificial, 3D shapes that could be molded into soft (G' < 1000 Pa) hydrogel substrates. Specifically, three-arm 1.3 kDa PEG thiol and three-arm 1.6 kDa PEG norbornene, containing internal thioester groups, were photopolymerized to yield degradable elastomers. When incubated in a solution of 300 mM 2-mercaptoethanol (pH 9.0), 1 mm thick 10 mm diameter elastomer discs degraded in <2 h. Using DLP, arrays of features with critical dimensions of 37 ± 4µm, resolutions of 22 ± 5µm, and overhang structures as small as 50µm, were printed on the order of minutes. These sacrificial thioester molds with physiologically relevant features were cast-molded into Matrigel and subsequently degraded to create patterned void spaces with high fidelity. Intestinal stem cells (ISCs) cultured on the patterned Matrigel matrices formed confluent monolayers that conformed to the underlying pattern. DLP printed sacrificial thioester elastomer constructs provide a robust and rapid method to fabricate arrays of 3D organoid-sized features in soft tissue culture substrates and should enable investigations into the effect of epithelial geometry and spacing on the growth and differentiation of ISCs.


Subject(s)
Elastomers , Organoids , Hydrogels , Polyethylene Glycols , Printing, Three-Dimensional
18.
Adv Sci (Weinh) ; 8(12): 2003995, 2021 06.
Article in English | MEDLINE | ID: mdl-34194928

ABSTRACT

Implantable electrophoretic drug delivery devices have shown promise for applications ranging from treating pathologies such as epilepsy and cancer to regulating plant physiology. Upon applying a voltage, the devices electrophoretically transport charged drug molecules across an ion-conducting membrane out to the local implanted area. This solvent-flow-free "dry" delivery enables controlled drug release with minimal pressure increase at the outlet. However, a major challenge these devices face is limiting drug leakage in their idle state. Here, a method of reducing passive drug leakage through the choice of the drug co-ion is presented. By switching acetylcholine's associated co-ion from chloride to carboxylate co-ions as well as sulfopropyl acrylate-based polyanions, steady-state drug leakage rate is reduced up to sevenfold with minimal effect on the active drug delivery rate. Numerical simulations further illustrate the potential of this method and offer guidance for new material systems to suppress passive drug leakage in electrophoretic drug delivery devices.


Subject(s)
Drug Delivery Systems/methods , Electrophoresis , Acetylcholine/chemistry , Equipment Design , Polyelectrolytes/chemistry
19.
Frontline Gastroenterol ; 12(3): 188-192, 2021.
Article in English | MEDLINE | ID: mdl-33903815

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, aerosol-generating procedures such as upper gastrointestinal endoscopy (UGIE) have been considered high risk. We designed a novel acrylic box (endoscopy box (EBOX)) with the intention of limiting aerosol and droplet spread during such procedures. We evaluated clinical utility, impact on the endoscopy team and also assessed the impact of the EBOX on macroscopic droplet spread from a simulated cough during UGIE. METHODS: Clinical utility was evaluated prospectively via EBOX use on 15 patients undergoing endoscopic retrograde cholangiopancreatography (13) or endoscopic ultrasound (2). Feedback was recorded from the endoscopy team regarding ease of positioning, impact of the EBOX on procedural performance and cleaning. A cough was simulated via explosion of a hyperinflated balloon containing 0.75 mL of ultraviolet disclosing lotion within the oral cavity of a mannequin, with and without the EBOX. Macroscopic spread was then evaluated with a ultraviolet torch. RESULTS: Three endoscopists and the team members found that the EBOX did not hamper the procedure and felt it was a useful adjunct to full personal protective equipment (PPE). Simulated cough without the EBOX identified macroscopic spread up to 2.3 m away from the patient's mouth as well as onto key areas such as the exposed neck of the endoscopist, which is not considered in current PPE guidance. Simulated cough using the EBOX significantly reduced macroscopic spread onto key areas of the healthcare workers. CONCLUSIONS: The EBOX is a valuable adjunct to recommended PPE for UGIE, but still allows these procedures to be performed in the standard manner.

20.
Microscopy (Oxf) ; 70(1): 131-147, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32986121

ABSTRACT

Ptychography is a coherent diffractive imaging technique that can determine how an electron wave is transmitted through an object by probing it in many small overlapping regions and processing the diffraction data obtained at each point. The resulting electron transmission model describes both phase and amplitude changes to the electron wave. Ptychography has been adopted in transmission electron microscopy in recent years following advances in high-speed direct electron detectors and computer algorithms which now make the technique suitable for practical applications. Its ability to retrieve quantitative phase information at high spatial resolution makes it a plausible alternative or complement to electron holography. Furthermore, unlike off-axis electron holography, it can provide phase information without an electron bi-prism assembly or the requirement of a minimally structured region adjacent to the region of interest in the object. However, it does require a well-calibrated scanning transmission electron microscope and a well-managed workflow to manage the calibration, data acquisition and reconstruction process to yield a practical technique. Here we detail this workflow and highlight how this is greatly assisted by acquisition management software. Through experimental data and modelling we also explore the similarities and differences between high-resolution ptychography and electron holography. Both techniques show a dependence of the recovered phase on the crystalline orientation of the material which is attributable to dynamical scattering. However, the exact nature of the variation differs reflecting fundamental expectations, but nonetheless equally useful information is obtained from electron holography and the ptychographically determined object transmission function.

SELECTION OF CITATIONS
SEARCH DETAIL
...