Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 69(3): 1118-1130, 2022 May.
Article in English | MEDLINE | ID: mdl-33724677

ABSTRACT

Rabbit haemorrhagic disease virus (RHDV) is highly pathogenic to European rabbits. Until recently, only one serotype of RHDV was known, GI.1/RHDV. RHDV2/GI.2 is a novel virus that has rapidly spread and become the dominant pathogenic calicivirus in wild rabbits worldwide. It is speculated that RHDV2 has three competitive advantages over RHDV: (a) the ability to partially overcome immunity to other variants; (b) the ability to clinically infect young rabbits; and (c) a wider host range. These differences would be expected to influence virus transmission dynamics. We used markers of recent infection (IgM/IgA antibodies) to investigate virus transmission dynamics pre and post the arrival of RHDV2. Our data set contained over 3,900 rabbits sampled across a 7-year period at 12 Australian sites. Following the arrival of RHDV2, seasonal peaks in IgM and IgA seropositivity shifted forward one season, from winter to autumn and spring to winter, respectively. Contrary to predictions, we found only weak effects of rabbit age, seropositivity to non-pathogenic calicivirus RCV-A1 and population abundance on IgM/IgA seropositivity. Our results demonstrate that RHDV2 enters rabbit populations shortly after the commencement of annual breeding cycles. Upon entering, the population RHDV2 undergoes extensive replication in young rabbits, causing clinical disease, high virus shedding, mortality and the creation of virus-laden carcasses. This results in high virus contamination in the environment, furthering the transmission of RHDV2 and initiating outbreaks, whilst simultaneously removing the susceptible cohort required for the effective transmission of RHDV. Although RHDV may enter the population at the same time point, it is sub-clinical in young rabbits, causing minimal virus shedding and low environmental contamination. Our results demonstrate a major shift in epidemiological patterns in virus transmission, providing the first evidence that RHDV2's ability to clinically infect young rabbits is a key competitive advantage in the field.


Subject(s)
Caliciviridae Infections , Hemorrhagic Disease Virus, Rabbit , Animals , Australia/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Humans , Immunoglobulin A , Immunoglobulin M , Phylogeny , Rabbits
2.
Ecol Evol ; 11(13): 9062-9078, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34257944

ABSTRACT

Juvenile mammals in their postweaning developmental stages face many challenges in transitioning to adulthood. Among large grazing species such as ruminant bovids and cervids, an overarching challenge is acquiring and processing sufficient nutrients to survive and grow, with a gut that may not yet be fully developed. Marsupial kangaroos of Australia face similar challenges; they also digest vegetation by fermentation in a large foregut. In red kangaroos, Osphranter rufus (=Macropus rufus), the dominant species of Australia's arid interior, females may breed continuously; however, juvenile recruitment to the adult population is irregular and coincident with sporadic rainfall.As compared with adult females, the nutritional requirements of juvenile O. rufus are high in relation to their body mass (BM), largely due to the cost of their rapid growth. We examined processes that juveniles have in their morphology, physiology, and behaviors to meet their elevated nutritional needs, by comparing recently weaned juveniles of both sexes and adult female O. rufus in their desert habitat. Features studied include relative body sizes, relative dimensions, and capacities of principal gut regions, the foregut, small intestine, caecum, and large intestine with rectum. Also examined were digesta attributes and rates of digesta excretion. Additionally, the rates of change in skull parameters and dental characteristics to maturity were assessed. Field determinations of diet choice were made for both age classes.In juveniles, the content masses of major gut structures were related to body mass (BM), as were those of adult females, that is, ~BM1.0. In both age classes, the digesta mass of the foreguts exceeded 75% of the total digesta mass. Diets of both juvenile and adult O. rufus largely focused on grasses. Juveniles had higher rates of digesta excretion while foraging than adults. In addition, the foregut contents in juveniles occupy proportionally less of the total gut than in adult females. Together, the higher excretion rate and smaller relative foregut of juveniles suggest that they necessarily focus on forage that can be rapidly digested, such as young, green grasses, or herbage.Comparison of the skulls of juveniles and adults revealed how this harvest can occur. Relative to BM, juveniles had skulls of larger volume than adults. Additionally, during growth the skull lengthens proportionally faster than increasing BM. By weaning, the dimensions of the incisor bite of juveniles neared those of adult females. The area of wear on premolars/molars increased only slowly relative to the development of incisors, further pointing to juveniles selecting more digestible forage than adults. The intermittent availability of such forage, principally young grasses, appears key to the significant recruitment into the O. rufus population in their arid habitat.

3.
Biol Lett ; 13(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29212751

ABSTRACT

An increase in variation in the 24 h pattern of body temperature (heterothermy) in mammals can be induced by energy and water deficits. Since performance traits such as growth and reproduction also are impacted by energy and water balance, we investigated whether the characteristics of the body temperature rhythm provide an indication of the reproductive success of an individual. We show that the amplitude of the daily rhythm of body temperature in wild rabbits (Oryctolagus cuniculus) prior to breeding is inversely related to the number of pregnancies in the subsequent seven months, while the minimum daily body temperature is positively correlated to the number of pregnancies. Because reproductive output could be predicted from characteristics of the core body temperature rhythm prior to the breeding season, we propose that the pattern of the 24 h body temperature rhythm could provide an index of animal fitness in a given environment.


Subject(s)
Body Temperature Regulation , Genetic Fitness , Rabbits/physiology , Reproduction , Animals , Circadian Rhythm , Female , New South Wales , Pregnancy , Rabbits/genetics
4.
Ecol Evol ; 5(10): 2036-47, 2015 May.
Article in English | MEDLINE | ID: mdl-26045954

ABSTRACT

Ecological traps are habitat sinks that are preferred by dispersing animals but have higher mortality or reduced fecundity compared to source habitats. Theory suggests that if mortality rates are sufficiently high, then ecological traps can result in extinction. An ecological trap may be created when pest animals are controlled in one area, but not in another area of equal habitat quality, and when there is density-dependent immigration from the high-density uncontrolled area to the low-density controlled area. We used a logistic population model to explore how varying the proportion of habitat controlled, control mortality rate, and strength of density-dependent immigration for feral pigs could affect the long-term population abundance and time to extinction. Increasing control mortality, the proportion of habitat controlled and the strength of density-dependent immigration decreased abundance both within and outside the area controlled. At higher levels of these parameters, extinction was achieved for feral pigs. We extended the analysis with a more complex stochastic, interactive model of feral pig dynamics in the Australian rangelands to examine how the same variables as the logistic model affected long-term abundance in the controlled and uncontrolled area and time to extinction. Compared to the logistic model of feral pig dynamics, the stochastic interactive model predicted lower abundances and extinction at lower control mortalities and proportions of habitat controlled. To improve the realism of the stochastic interactive model, we substituted fixed mortality rates with a density-dependent control mortality function, empirically derived from helicopter shooting exercises in Australia. Compared to the stochastic interactive model with fixed mortality rates, the model with the density-dependent control mortality function did not predict as substantial decline in abundance in controlled or uncontrolled areas or extinction for any combination of variables. These models demonstrate that pest eradication is theoretically possible without the pest being controlled throughout its range because of density-dependent immigration into the area controlled. The stronger the density-dependent immigration, the better the overall control in controlled and uncontrolled habitat combined. However, the stronger the density-dependent immigration, the poorer the control in the area controlled. For feral pigs, incorporating environmental stochasticity improves the prospects for eradication, but adding a realistic density-dependent control function eliminates these prospects.

SELECTION OF CITATIONS
SEARCH DETAIL
...