Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Hum Brain Mapp ; 45(1): e26568, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224539

ABSTRACT

White matter hyperintensities (WMH) are a radiological manifestation of progressive white matter integrity loss. The total volume and distribution of WMH within the corpus callosum have been associated with pathological cognitive ageing processes but have not been considered in relation to post-stroke aphasia outcomes. We investigated the contribution of both the total volume of WMH, and the extent of WMH lesion load in the corpus callosum to the recovery of language after first-ever stroke. Behavioural and neuroimaging data from individuals (N = 37) with a left-hemisphere stroke were included at the early subacute stage of recovery. Spoken language comprehension and production abilities were assessed using word and sentence-level tasks. Neuroimaging data was used to derive stroke lesion variables (volume and lesion load to language critical regions) and WMH variables (WMH volume and lesion load to three callosal segments). WMH volume did not predict variance in language measures, when considered together with stroke lesion and demographic variables. However, WMH lesion load in the forceps minor segment of the corpus callosum explained variance in early subacute comprehension abilities (t = -2.59, p = .01) together with corrected stroke lesion volume and socio-demographic variables. Premorbid WMH lesions in the forceps minor were negatively associated with early subacute language comprehension after aphasic stroke. This negative impact of callosal WMH on language is consistent with converging evidence from pathological ageing suggesting that callosal WMH disrupt the neural networks supporting a range of cognitive functions.


Subject(s)
Aphasia , Stroke , White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Aphasia/diagnostic imaging , Aphasia/etiology , Cognition , Stroke/complications , Stroke/diagnostic imaging , Stroke/pathology , Aging , Magnetic Resonance Imaging
2.
Neuropsychologia ; 174: 108339, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35921869

ABSTRACT

Accumulating evidence indicates two cortical regions, the left ventral premotor cortex (PMv) and left intraparietal sulcus (IPS), are involved in spoken verb production. Some evidence also indicates these regions may be differentially engaged by transitive (i.e., object-oriented) versus intransitive actions. We explored the role of these regions during action picture naming in two experiments, each employing high frequency (10 Hz) online repetitive Transcranial Magnetic Stimulation (rTMS) in 20 participants. In Experiment 1, participants named intransitive action pictures (e.g., LAUGH) accompanied by active and sham rTMS to the left PMv, left IPS, and right superior parietal lobule (SPL; control site). Application of rTMS to PMv resulted in slower naming latencies compared to sham and control site stimulation, whereas stimulation of the IPS did not result in any significant effects. Experiment 2 employed active and sham rTMS identical to Experiment 1 with transitive action pictures (e.g., PUSH). Stimulation of both regions induced changes in naming latencies compared to sham and control site stimulation, with rTMS applied to PMv slowing responses and IPS stimulation facilitating them. Surprisingly, stimulation of the right SPL control site also slowed naming compared to sham across both Experiments. Overall, these findings indicate different roles for PMv and IPS during action picture naming. Specifically, the divergent effects of PMv and IPS stimulation in the transitive action naming task indicate different processes likely operate in the two regions during verb production. Involvement of the right SPL across both transitive and intransitive action naming might reflect visuospatial or general attention mechanisms rather than language processes per se.


Subject(s)
Motor Cortex , Names , Humans , Language , Parietal Lobe/physiology , Transcranial Magnetic Stimulation/methods
3.
Transl Psychiatry ; 7(5): e1116, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28463239

ABSTRACT

The aetiology of suicidal behaviour is complex, and knowledge about its neurobiological mechanisms is limited. Neuroimaging methods provide a noninvasive approach to explore the neural correlates of suicide vulnerability in vivo. The ENIGMA-MDD Working Group is an international collaboration evaluating neuroimaging and clinical data from thousands of individuals collected by research groups from around the world. Here we present analyses in a subset sample (n=3097) for whom suicidality data were available. Prevalence of suicidal symptoms among major depressive disorder (MDD) cases ranged between 29 and 69% across cohorts. We compared mean subcortical grey matter volumes, lateral ventricle volumes and total intracranial volume (ICV) in MDD patients with suicidal symptoms (N=451) vs healthy controls (N=1996) or MDD patients with no suicidal symptoms (N=650). MDD patients reporting suicidal plans or attempts showed a smaller ICV (P=4.12 × 10-3) or a 2.87% smaller volume compared with controls (Cohen's d=-0.284). In addition, we observed a nonsignificant trend in which MDD cases with suicidal symptoms had smaller subcortical volumes and larger ventricular volumes compared with controls. Finally, no significant differences (P=0.28-0.97) were found between MDD patients with and those without suicidal symptoms for any of the brain volume measures. This is by far the largest neuroimaging meta-analysis of suicidal behaviour in MDD to date. Our results did not replicate previous reports of association between subcortical brain structure and suicidality and highlight the need for collecting better-powered imaging samples and using improved suicidality assessment instruments.


Subject(s)
Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Suicidal Ideation , Adult , Aged , Brain/anatomy & histology , Brain/pathology , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/psychology , Female , Humans , Male , Middle Aged , Prevalence , Risk Factors , Suicide/psychology , Suicide/statistics & numerical data , Young Adult
5.
Mol Psychiatry ; 22(6): 900-909, 2017 06.
Article in English | MEDLINE | ID: mdl-27137745

ABSTRACT

The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen's d effect sizes: -0.10 to -0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: -0.26 to -0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.


Subject(s)
Cerebral Cortex/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Adolescent , Adult , Brain/pathology , Cerebral Cortex/diagnostic imaging , Female , Frontal Lobe/pathology , Gray Matter/pathology , Gyrus Cinguli/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Neuroimaging/methods , Neuroimaging/psychology , Prefrontal Cortex/pathology , Temporal Lobe/pathology
6.
Mol Psychiatry ; 21(12): 1680-1689, 2016 12.
Article in English | MEDLINE | ID: mdl-27725656

ABSTRACT

Schizophrenia is a devastating neurodevelopmental disorder with a complex genetic etiology. Widespread cortical gray matter loss has been observed in patients and prodromal samples. However, it remains unresolved whether schizophrenia-associated cortical structure variations arise due to disease etiology or secondary to the illness. Here we address this question using a partitioning-based heritability analysis of genome-wide single-nucleotide polymorphism (SNP) and neuroimaging data from 1750 healthy individuals. We find that schizophrenia-associated genetic variants explain a significantly enriched proportion of trait heritability in eight brain phenotypes (false discovery rate=10%). In particular, intracranial volume and left superior frontal gyrus thickness exhibit significant and robust associations with schizophrenia genetic risk under varying SNP selection conditions. Cross-disorder comparison suggests that the neurogenetic architecture of schizophrenia-associated brain regions is, at least in part, shared with other psychiatric disorders. Our study highlights key neuroanatomical correlates of schizophrenia genetic risk in the general population. These may provide fundamental insights into the complex pathophysiology of the illness, and a potential link to neurocognitive deficits shaping the disorder.


Subject(s)
Brain/physiopathology , Schizophrenia/genetics , Schizophrenia/physiopathology , Adolescent , Adult , Brain/anatomy & histology , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Gray Matter/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors
8.
Mol Psychiatry ; 21(6): 806-12, 2016 06.
Article in English | MEDLINE | ID: mdl-26122586

ABSTRACT

The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen's d=-0.14, % difference=-1.24). This effect was driven by patients with recurrent MDD (Cohen's d=-0.17, % difference=-1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen's d=-0.20, % difference=-1.85) and a trend toward smaller amygdala (Cohen's d=-0.11, % difference=-1.23) and larger lateral ventricles (Cohen's d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.


Subject(s)
Brain/pathology , Depressive Disorder, Major/pathology , Adult , Case-Control Studies , Female , Hippocampus/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging/methods
9.
Proc IEEE Int Symp Biomed Imaging ; 2015: 449-453, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26413204

ABSTRACT

Anatomical brain networks change throughout life and with diseases. Genetic analysis of these networks may help identify processes giving rise to heritable brain disorders, but we do not yet know which network measures are promising for genetic analyses. Many factors affect the downstream results, such as the tractography algorithm used to define structural connectivity. We tested nine different tractography algorithms and four normalization methods to compute brain networks for 853 young healthy adults (twins and their siblings). We fitted genetic structural equation models to all nine network measures, after a normalization step to increase network consistency across tractography algorithms. Probabilistic tractography algorithms with global optimization (such as Probtrackx and Hough) yielded higher heritability statistics than "greedy" algorithms (such as FACT) which process small neighborhoods at each step. Some global network measures (probtrackx-derived GLOB and ST) showed significant genetic effects, making them attractive targets for genome-wide association studies.

10.
Genes Brain Behav ; 13(8): 821-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25199620

ABSTRACT

Understanding the aetiology of patterns of variation within and covariation across brain regions is key to advancing our understanding of the functional, anatomical and developmental networks of the brain. Here we applied multivariate twin modelling and principal component analysis (PCA) to investigate the genetic architecture of the size of seven subcortical regions (caudate nucleus, thalamus, putamen, pallidum, hippocampus, amygdala and nucleus accumbens) in a genetically informative sample of adolescents and young adults (N = 1038; mean age = 21.6 ± 3.2 years; including 148 monozygotic and 202 dizygotic twin pairs) from the Queensland Twin IMaging (QTIM) study. Our multivariate twin modelling identified a common genetic factor that accounts for all the heritability of intracranial volume (0.88) and a substantial proportion of the heritability of all subcortical structures, particularly those of the thalamus (0.71 out of 0.88), pallidum (0.52 out of 0.75) and putamen (0.43 out of 0.89). In addition, we also found substantial region-specific genetic contributions to the heritability of the hippocampus (0.39 out of 0.79), caudate nucleus (0.46 out of 0.78), amygdala (0.25 out of 0.45) and nucleus accumbens (0.28 out of 0.52). This provides further insight into the extent and organization of subcortical genetic architecture, which includes developmental and general growth pathways, as well as the functional specialization and maturation trajectories that influence each subcortical region.


Subject(s)
Cerebrum/anatomy & histology , Twins/genetics , Adolescent , Adult , Female , Humans , Male , Organ Size/genetics , Young Adult
11.
Q J Exp Psychol (Hove) ; 67(12): 2325-39, 2014.
Article in English | MEDLINE | ID: mdl-24830335

ABSTRACT

How does the presence of a categorically related word influence picture naming latencies? In order to test competitive and noncompetitive accounts of lexical selection in spoken word production, we employed the picture-word interference (PWI) paradigm to investigate how conceptual feature overlap influences naming latencies when distractors are category coordinates of the target picture. Mahon et al. (2007. Lexical selection is not by competition: A reinterpretation of semantic interference and facilitation effects in the picture-word interference paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(3), 503-535. doi:10.1037/0278-7393.33.3.503 ) reported that semantically close distractors (e.g., zebra) facilitated target picture naming latencies (e.g., HORSE) compared to far distractors (e.g., whale). We failed to replicate a facilitation effect for within-category close versus far target-distractor pairings using near-identical materials based on feature production norms, instead obtaining reliably larger interference effects (Experiments 1 and 2). The interference effect did not show a monotonic increase across multiple levels of within-category semantic distance, although there was evidence of a linear trend when unrelated distractors were included in analyses (Experiment 2). Our results show that semantic interference in PWI is greater for semantically close than for far category coordinate relations, reflecting the extent of conceptual feature overlap between target and distractor. These findings are consistent with the assumptions of prominent competitive lexical selection models of speech production.


Subject(s)
Attention/physiology , Pattern Recognition, Visual/physiology , Reaction Time , Semantics , Adolescent , Humans , Young Adult
12.
Mol Psychiatry ; 16(9): 927-37, 881, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21502949

ABSTRACT

The caudate is a subcortical brain structure implicated in many common neurological and psychiatric disorders. To identify specific genes associated with variations in caudate volume, structural magnetic resonance imaging and genome-wide genotypes were acquired from two large cohorts, the Alzheimer's Disease NeuroImaging Initiative (ADNI; N=734) and the Brisbane Adolescent/Young Adult Longitudinal Twin Study (BLTS; N=464). In a preliminary analysis of heritability, around 90% of the variation in caudate volume was due to genetic factors. We then conducted genome-wide association to find common variants that contribute to this relatively high heritability. Replicated genetic association was found for the right caudate volume at single-nucleotide polymorphism rs163030 in the ADNI discovery sample (P=2.36 × 10⁻6) and in the BLTS replication sample (P=0.012). This genetic variation accounted for 2.79 and 1.61% of the trait variance, respectively. The peak of association was found in and around two genes, WDR41 and PDE8B, involved in dopamine signaling and development. In addition, a previously identified mutation in PDE8B causes a rare autosomal-dominant type of striatal degeneration. Searching across both samples offers a rigorous way to screen for genes consistently influencing brain structure at different stages of life. Variants identified here may be relevant to common disorders affecting the caudate.


Subject(s)
Caudate Nucleus/anatomy & histology , Dopamine/genetics , Genome-Wide Association Study/statistics & numerical data , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Adult , Age Factors , Aged , Female , Genetic Variation , Genome-Wide Association Study/methods , Genotype , Heredity/genetics , Humans , Magnetic Resonance Imaging/methods , Male , Neuroimaging/statistics & numerical data , Polymorphism, Single Nucleotide
13.
IEEE Trans Med Imaging ; 27(4): 442-56, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18390342

ABSTRACT

We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.


Subject(s)
Algorithms , Brain/anatomy & histology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Subtraction Technique , Aged , Female , Humans , Image Enhancement/methods , Information Theory , Male , Reproducibility of Results , Sensitivity and Specificity
14.
J Neurol Neurosurg Psychiatry ; 77(10): 1122-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16754694

ABSTRACT

BACKGROUND: Magnetic resonance diffusion tensor imaging (DTI) shows promise in the early detection of microstructural pathophysiological changes in the brain. OBJECTIVES: To measure microstructural differences in the brains of participants with amnestic mild cognitive impairment (MCI) compared with an age-matched control group using an optimised DTI technique with fully automated image analysis tools and to investigate the correlation between diffusivity measurements and neuropsychological performance scores across groups. METHODS: 34 participants (17 participants with MCI, 17 healthy elderly adults) underwent magnetic resonance imaging (MRI)-based DTI. To control for the effects of anatomical variation, diffusion images of all participants were registered to standard anatomical space. Significant statistical differences in diffusivity measurements between the two groups were determined on a pixel-by-pixel basis using gaussian random field theory. RESULTS: Significantly raised mean diffusivity measurements (p<0.001) were observed in the left and right entorhinal cortices (BA28), posterior occipital-parietal cortex (BA18 and BA19), right parietal supramarginal gyrus (BA40) and right frontal precentral gyri (BA4 and BA6) in participants with MCI. With respect to fractional anisotropy, participants with MCI had significantly reduced measurements (p<0.001) in the limbic parahippocampal subgyral white matter, right thalamus and left posterior cingulate. Pearson's correlation coefficients calculated across all participants showed significant correlations between neuropsychological assessment scores and regional measurements of mean diffusivity and fractional anisotropy. CONCLUSIONS: DTI-based diffusivity measures may offer a sensitive method of detecting subtle microstructural brain changes associated with preclinical Alzheimer's disease.


Subject(s)
Amnesia/pathology , Brain/pathology , Cognition Disorders/pathology , Diffusion Magnetic Resonance Imaging , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Amnesia/psychology , Anisotropy , Cognition Disorders/psychology , Female , Humans , Male , Mental Status Schedule
15.
Hum Brain Mapp ; 14(4): 218-27, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11668653

ABSTRACT

We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production.


Subject(s)
Evoked Potentials/physiology , Magnetic Resonance Imaging/methods , Reaction Time/physiology , Semantics , Adult , Analysis of Variance , Brain Mapping/methods , Cerebral Cortex/physiology , Concept Formation/physiology , Female , Humans , Male , Photic Stimulation/methods
16.
J Biol Chem ; 256(16): 8531-5, 1981 Aug 25.
Article in English | MEDLINE | ID: mdl-6267046

ABSTRACT

Ecto-cyclic AMP phosphodiesterase activity was determined from freshly isolated and cultured liver cells. The cells were capable of hydrolyzing cyclic AMP in the medium. The ecto-phosphodiesterase represents a low Km phosphodiesterase which was activated by physiological concentrations of insulin. The product, 5'-AMP, was recovered in the medium and not with the cells. The enzyme was inhibited with aminophylline and trypsin. The ecto-phosphodiesterase activity was proportional to cell number, and total phosphodiesterase activity increased 5- to 10-fold when the cells were ruptured. About one-third of the ecto-phosphodiesterase activity from freshly isolated liver was due to phosphodiesterase in the medium. No phosphodiesterase was in the medium of cultured liver cells.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Liver/enzymology , Adenosine Monophosphate/metabolism , Animals , Cells, Cultured , Cricetinae , Cyclic AMP/metabolism , Insulin/pharmacology , Kinetics , Liver/drug effects , Mesocricetus , Rats , Tritium , Trypsin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...