Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 33(12): 217, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29181800

ABSTRACT

Listeria monocytogenes is a particular risk for the ready-to-eat food sector because of its ability to grow in various environmental conditions. In the literature, growth and survival of L. monocytogenes on food is tested using inoculation densities ranging from less than 102 to over 105 CFU g-1. Inoculation densities on food have been rarely tested as a factor for growth. In this study, inoculation densities from 102 to 105 of L. monocytogenes were tested on iceberg lettuce (Lactuca sativa) in modified atmospheres and air in model packages at 4 and 8 °C to identify any potential inoculation density effects. On days 0, 2, 5 and 7, L. monocytogenes was extracted from the lettuce surface and enumerated via selective media. The resulting growth curves identified a significant inoculation density effect at 4 and 8 °C with significantly higher amounts of growth (1-2 logs) when lettuce was inoculated at 102 CFU g-1 as opposed to 104 and 105 CFU g-1. In contrast, the use of different atmospheres had limited influence on growth of L. monocytogenes. In conclusion, greater emphasis on inoculation density of L. monocytogenes should be taken in inoculation experiments when confirmation of growth or the efficacies of growth inhibiting treatments are tested on ready-to-eat food such as lettuce.


Subject(s)
Lactuca/microbiology , Listeria monocytogenes/growth & development , Food Microbiology , Food Packaging , Food Preservation , Temperature
2.
Int J Food Microbiol ; 249: 18-26, 2017 May 16.
Article in English | MEDLINE | ID: mdl-28271853

ABSTRACT

The problem of assessing the occurrence of the food-borne pathogen Listeria monocytogenes in the food chain, and therefore the risk of exposure of the human population, is often challenging because of the limited scope of some studies. In this study the occurrence of L. monocytogenes in food from four major food groups, dairy products, meats, seafood and vegetables, and associated food processing environments in Ireland was studied over a three-year period. Fifty-four small food businesses participated in the study and sent both food and environmental samples every 2months between 2013 and 2015. L. monocytogenes was isolated using the ISO11290 standard method. Confirmation of L. monocytogenes and identification of serogroups were achieved using a multiplex PCR assay, and for some isolates serotype was determined using commercial antisera. Pulsed- field gel electrophoresis (PFGE) analysis was performed on all isolates allowing the relatedness of isolates from different food businesses to be compared nationwide. In total, 86 distinct pulsotypes were identified. The overall occurrence of L. monocytogenes in food samples was 4.2%, while in environmental samples it was 3.8%. In general, the occurrence of L. monocytogenes in food businesses decreased over the course of the study, presumably reflecting increased awareness and vigilance. The majority of the pulsotypes detected were unique to a particular food group (63/86), while only three pulsotypes were found in all four food groups investigated. The highest occurrence in food was found in the meat category (7.5%) while seafood had the lowest rate of occurrence (1.8%). Seventeen of the pulsotypes detected in the study were persistent, where persistence was defined as repeated isolation from a single facility with a minimum time interval of 6months. Using PFGE, 11 of the pulsotypes identified in this study were indistinguishable from those of 11 clinical isolates obtained from patients in Ireland over the last 4years, highlighting the fact that these pulsotypes are capable of causing disease. Overall, the study shows the diversity of L. monocytogenes strains in the Irish food chain and highlights the ability of many of these strains to persist in food processing environments. The finding that a significant proportion of these pulsotypes are also found in clinical settings highlights the need for continued vigilance by food producers, including frequent sampling and typing of isolates detected.


Subject(s)
Dairy Products/microbiology , Food Contamination/analysis , Listeria monocytogenes/isolation & purification , Meat/microbiology , Seafood/microbiology , Vegetables/microbiology , Animals , Electrophoresis, Gel, Pulsed-Field/methods , Food Handling/methods , Food Microbiology , Food Safety/methods , Humans , Ireland
SELECTION OF CITATIONS
SEARCH DETAIL
...