Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(20): e202402795, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38465783

ABSTRACT

While the nucleophilic addition of ammonia to ketones is an archetypal reaction in classical organic chemistry, the reactivity of heavier group 14 carbonyl analogues (R2E=O; E=Si, Ge, Sn, or Pb) with NH3 remains sparsely investigated, primarily due to the synthetic difficulties in accessing heavier ketone congeners. Herein, we present a room-temperature stable boryl-substituted amidinato-silanone {(HCDippN)2B}{PhC(tBuN)2}Si=O (Dipp=2,6-iPr2C6H3) (together with its germanone analogue), formed from the corresponding silylene under a N2O atmosphere. This system reacts cleanly with ammonia in 1,2-fashion to give an isolable sila-hemiaminal complex {(HCDippN)2B}{PhC(tBuN)2}Si(OH)(NH2). Quantum chemical calculations reveal that the formation of this sila-hemiaminal is crucially dependent on the nature of the ancillary ligand scaffold. It is facilitated thermodynamically by the hemi-lability of the amidinate ligand (which allows for the formation of an energetically critical intramolecular N⋅⋅⋅HO hydrogen bond within the product) and is enabled mech-anistically by a process in which the silanone initially acts in umpolung fashion as a base (rather than an acid), due to the strongly electron-releasing and sterically bulky nature of the ancillary boryl ligand.

2.
Angew Chem Int Ed Engl ; 61(48): e202211616, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36161749

ABSTRACT

A systematic study to access stable stannaimines is reported, by combining different heteroleptic stannylenes with a range of organic azides. The reactions of terphenyl-/hypersilyl-substituted stannylenes yield the putative tin nitrogen double bond, but is directly followed by 1,2-silyl migration to give SnII systems featuring bulky silylamido ligands. By contrast, the transition from a two σ donor ligand set to a mixed σ-donor/π-donor scaffold allows access to three new stannaimines which can be handled at room temperature. The reactivity profile of these Sn=N bonded species is crucially dependent on the substituent at the nitrogen atom. As such, the Sn=NMes (Mes=2,4,6-Me3 C6 H2 ) system is capable of activating a broad range of substrates under ambient conditions via 1,2-addition reactions, [2+2] and [4+2] cycloaddition reactions. Most interestingly, very rare examples of main group multiple bond metathesis reactions are also found to be viable.

3.
Chem Commun (Camb) ; 58(59): 8274-8277, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35790119

ABSTRACT

We report on the insertion of alkynes into heterometallic M-M' bonds, producing (aluminylalkenyl)copper compounds which possess differential reactivity at the two derived M-C functions. Uniquely, this system is capable of controlling access to isolable syn or anti dimetallated alkenes, by employing either kinetic or thermodynamic control. Subsequent derivatization with CO is both stereoselective (to syn systems) and regioselective (to Cu-C bonds), leading to the formation of the first structurally characterized examples of copper acyl compounds - aided by the cooperative reactivity of the proximal aluminium centre.

4.
Angew Chem Int Ed Engl ; 61(17): e202117496, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35143702

ABSTRACT

We report on the reversible uptake of carbon dioxide by dimetallynes featuring ancillary hemi-labile pincer ligands. Insertion into the Ge-Ge/Sn-Sn bonds yields species containing an E(CO2 )E unit, with the mode of ligation of the CO2 fragment determined crystallographically being found to be dependent on the identity of the Group 14 element. The thermodynamics of CO2 uptake/loss can be established through VT NMR (ΔH°=+24.6(2.3) kJ mol-1 , ΔS°=+64.9(3.8) J mol-1 K-1 , ΔG°298 =+5.3(1.9) kJ mol-1 for the loss of CO2 in the Ge case), and the chemical consequences of reversibility demonstrated by thermodynamically-controlled exchange reactions.

5.
Angew Chem Int Ed Engl ; 61(5): e202114926, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34811868

ABSTRACT

We report on the synthesis of a distannyne supported by a pincer ligand bearing pendant amine donors that is capable of reversibly activating E-H bonds at one or both of the tin centres through dissociation of the hemi-labile N-Sn donor/acceptor interactions. This chemistry can be exploited to sequentially (and reversibly) assemble mixed-valence chains of tin atoms of the type ArSn{Sn(Ar)H}n SnAr (n=1, 2). The experimentally observed (decreasing) propensity towards chain growth with increasing chain length can be rationalized both thermodynamically and kinetically by the electron- withdrawing properties of the -Sn(Ar)H- backbone units generated via oxidative addition.

6.
Nat Commun ; 12(1): 7052, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34862371

ABSTRACT

Thiele's hydrocarbon occupies a central role as an open-shell platform for new organic materials, however little is known about its redox behaviour. While recent synthetic approaches involving symmetrical carbene substitution of the CPh2 termini yield isolable neutral/dicationic analogues, the intervening radical cations are much more difficult to isolate, due to narrow compatible redox ranges (typically < 0.25 V). Here we show that a hybrid BN/carbene approach allows access to an unsymmetrical analogue of Thiele's hydrocarbon 1, and that this strategy confers markedly enhanced stability on the radical cation. 1•+ is stable across an exceptionally wide redox range (> 1 V), permitting its isolation in crystalline form. Further single-electron oxidation affords borenium dication 12+, thereby establishing an organoboron redox system fully characterized in all three redox states. We perceive that this strategy can be extended to other transient organic radicals to widen their redox stability window and facilitate their isolation.

7.
Chem Sci ; 12(40): 13458-13468, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34777765

ABSTRACT

The synthesis of coinage metal aluminyl complexes, featuring M-Al covalent bonds, is reported via a salt metathesis approach employing an anionic Al(i) ('aluminyl') nucleophile and group 11 electrophiles. This approach allows access to both bimetallic (1 : 1) systems of the type ( t Bu3P)MAl(NON) (M = Cu, Ag, Au; NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) and a 2 : 1 di(aluminyl)cuprate system, K[Cu{Al(NON)}2]. The bimetallic complexes readily insert heteroallenes (CO2, carbodiimides) into the unsupported M-Al bonds to give systems containing a M(CE2)Al bridging unit (E = O, NR), with the µ-κ1(C):κ2(E,E') mode of heteroallene binding being demonstrated crystallographically for carbodiimide insertion in the cases of all three metals, Cu, Ag and Au. The regiochemistry of these processes, leading to the formation of M-C bonds, is rationalized computationally, and is consistent with addition of CO2 across the M-Al covalent bond with the group 11 metal acting as the nucleophilic partner and Al as the electrophile. While the products of carbodiimide insertion are stable to further reaction, their CO2 analogues have the potential to react further, depending on the identity of the group 11 metal. ( t Bu3P)Au(CO)2Al(NON) is inert to further reaction, but its silver counterpart reacts slowly with CO2 to give the corresponding carbonate complex (and CO), and the copper system proceeds rapidly to the carbonate even at low temperatures. Experimental and quantum chemical investigations of the mechanism of the CO2 to CO/carbonate transformation are consistent with rate-determining extrusion of CO from the initially-formed M(CO)2Al fragment to give a bimetallic oxide that rapidly assimilates a second molecule of CO2. The calculated energetic barriers for the most feasible CO extrusion step (ΔG ‡ = 26.6, 33.1, 44.5 kcal mol-1 for M = Cu, Ag and Au, respectively) are consistent not only with the observed experimental labilities of the respective M(CO)2Al motifs, but also with the opposing trends in M-C (increasing) and M-O bond strengths (decreasing) on transitioning from Cu to Au.

8.
Angew Chem Int Ed Engl ; 60(30): 16416-16419, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34047424

ABSTRACT

We report two BNB-type frustrated Lewis pairs which feature an acceptor-donor-acceptor functionalized cavity, and which differ in the nature of the B-bound fluoroaryl group (C6 F5 vs. C6 H3 (CF3 )2 -3,5, Arf ). These receptor systems are capable of capturing gaseous CO, and in the case of the -BArf 2 system this can be shown to occur in reversible fashion at/above room temperature. For both systems, the binding event is accompanied by migration of one of the aryl substituents to the electrophilic carbon of the CO guest. Experiments utilizing an additional equivalent of Pt Bu3 allow the initially formed (non-migrated) CO adduct to be identified and trapped (via demethylation), while also establishing the reversibility of the B-to-C migration process. When partnered with the slightly less Lewis acidic -BArf 2 substituent, this reversibility allows for release of the captured carbon monoxide in the temperature range 40-70 °C, and the possibility for CO sensing, making use of the associated colourless to orange/red colour change.

9.
Dalton Trans ; 50(26): 9059-9067, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-33973614

ABSTRACT

The reactions of the boryl-substituted stannylene Sn{B(NDippCH)2}2 (1) with carbon dioxide have been investigated and shown to proceed via pathways involving insertion into the Sn-B bond(s). In the first instance this leads to formation of the (boryl)tin(ii) borylcarboxylate complex Sn{B(NDippCH)2}{O2CB(NDippCH)2} (2), which has been structurally characterized and shown to feature a κ2 mode of coordination of the [(HCDippN)2BCO2]- ligand at the metal centre. 2 undergoes B-O reductive elimination in hexane solution (in the absence of further CO2) to give the boryl(borylcarboxylate)ester {(HCDippN)2B}O2C{B(NDippCH)2} (3) i.e. the product of formal diboration of carbon dioxide. Alternatively, 2 can assimilate a second equivalent of CO2 to give the homoleptic bis(borylcarboxylate) Sn{O2CB(NDippCH)2}2 (4), which can be prepared via an alternative route from SnBr2 and the potassium salt of [(HCDippN)2BCO2]-, and structurally characterized as its DMAP (N,N-dimethylaminopyridine) adduct. Structural and reactivity studies also point to the possibility for extrusion of CO from the [(HCDippN)2BCO2]- fragment to generate the boryloxy system [(HCDippN)2BO]-, a ligand which can be generated directly from 1via reaction with N2O. The initially formed unsymmetrical species Sn{B(NDippCH)2}{OB(NDippCH)2} has been shown to be amenable to crystallographic study in the solid state, but to undergo ligand redistribution in solution to generate a mixture of 1 and the bis(boryloxy) complex Sn{OB(NDippCH)2}2.

10.
Angew Chem Int Ed Engl ; 60(28): 15606-15612, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33939867

ABSTRACT

We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal-metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo-dimetallynes) can be controlled by the use of (acidic/basic) "protecting groups" and through variation of the ligand scaffold. Reduction of ArNiPr2 GeCl (ArNiPr2 =2,6-(i Pr2 NCH2 )2 C6 H3 )-featuring hemilabile Ni Pr2 donors-yields (ArNiPr2 Ge)4 (2), which contains a tetrameric Ge4 chain. 2 represents a novel type of a linear homo-catenated GeI compound featuring unsupported E-E bonds. Trapping experiments reveal that a key structural component is the central two-way Ge=Ge donor-acceptor bond: reactions with IMe4 and W(CO)5 (NMe3 ) give the base- or acid-stabilized digermynes (ArNiPr2 Ge(IMe4 ))2 (4) and (ArNiPr2 Ge{W(CO)5 })2 (5), respectively. The use of smaller N-donors leads to stronger Ge-N interactions and quenching of catenation behaviour: reduction of ArNEt2 GeCl gives the digermyne (ArNEt2 Ge)2 , while the unsymmetrical system ArNEt2 GeGeArNiPr2 dimerizes to give tetranuclear (ArNEt2 GeGeArNiPr2 )2 through aggregation at the Ni Pr2 -ligated GeI centres.

11.
Chemistry ; 27(9): 3159-3165, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33200850

ABSTRACT

The synthesis of a novel mono-anionic phosphino-amide ligand based on a xanthene backbone is reported, togetherr with the corresponding GaI complex, (PON)Ga (PON = 4-(di(2,4,6-trimethylphenyl)phosphino)-5-(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). The solid-state structure of (PON)Ga (obtained from X-ray crystallography) reveals very weak O⋅⋅⋅Ga and P⋅⋅⋅Ga interactions, consistent with a R2 NGa fragment which closely resembles those found in one-coordinate amidogallium systems. Strong N-to-Ga π donation from the amido substituent is reflected in a very short N-Ga distance (1.961(2) Å), while the P⋅⋅⋅Ga contact (3.076(1) Å) is well outside the sum of the respective covalent radii. While the donor properties of the PON ligand towards GaI are highly unsymmetrical, oxidation to GaIII leads to much stronger coordination of the pendant phosphine as shown by P-Ga distances which are up to 20 % shorter. From a steric perspective, the PON ligand is shown to be significantly bulkier than related ß-diketiminate systems, a finding consistent with reactions of (PON)Ga towards O-atom sources that proceed without oligomerization. Despite this, the enhanced P-donor properties brought about by oxidation at gallium are not sufficient to quench the reactivity of the highly polar Ga-O unit. Instead, intramolecular benzylic C-H activation is observed across the Ga-O bond of a transient gallanone intermediate.

12.
Inorg Chem ; 58(7): 4515-4523, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30864788

ABSTRACT

Recent breakthroughs have brought into question the innocence (or not) of carboxamidate donor ligands in the reactivity of high-valent oxidants. To test the reactivity properties of high-valent carboxamidate complexes, [NiII(tBu-terpy)(L)] (1, tBu-terpy = 4,4',4''-tri- tert-butyl-2,2';6',2″-terpyridine; L = N, N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate) was prepared and converted to [NiIII(tBu-terpy)(L)]+ (2) using ceric ammonium nitrate. 2 was characterized using electronic absorption and electron paramagnetic resonance spectroscopies and electrospray ionization mass spectrometry. 2 was found to be a capable oxidant of phenols and through kinetic analysis was found to oxidize these substrates via a nonconcerted or partially concerted proton coupled electron transfer (PCET) mechanism. The products of PCET oxidation of phenols by 2 were phenoxyl radical and the protonated form of 1, 1H+. 1H+ was crystallographically characterized providing convincing evidence of 1's ability to act as a proton acceptor. We demonstrate that the complex remained intact through a full cycle of oxidation of 1 to 2, PCET of 2 to yield 1H+, and deprotonation of 1H+ to yield 1 followed by reoxidation of 1 to yield 2. The N-H bond dissociation energy of the protonated amide in 1H+ was determined to be 84 kcal/mol. Our findings illuminate the role carboxamidate ligands can play in PCET oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...